Steel and polypropylene hybrid fiber-reinforced concretes have been widely considered for structural applications due to its superior mechanical performance compared to plain and mono fiber-reinforced concretes. Fire is one of the most serious potential risks to concrete structures. The fire resistance of the steel and polypropylene hybrid fiber-reinforced concretes cannot be ignored when assessing the safety of concrete structures. This paper reviews the available studies on the mechanical performance of thermally damaged steel and polypropylene hybrid fiber-reinforced concretes. The deterioration mechanism and the influence of the test factors were discussed. The temperature-dependent mechanical properties of the hybrid fiber-reinforced concretes were analyzed, including compressive elastic modulus, compressive strength, flexural strength, and fracture toughness. In addition, the effect of the post-fire re-curing on the mechanical performance of the thermally damaged steel and polypropylene hybrid fiber-reinforced concretes was also reviewed.

A review on the mechanical characteristics of thermally damaged steel and polypropylene hybrid fiber-reinforced concretes

Biolzi, Luigi;Carvelli, Valter;
2024-01-01

Abstract

Steel and polypropylene hybrid fiber-reinforced concretes have been widely considered for structural applications due to its superior mechanical performance compared to plain and mono fiber-reinforced concretes. Fire is one of the most serious potential risks to concrete structures. The fire resistance of the steel and polypropylene hybrid fiber-reinforced concretes cannot be ignored when assessing the safety of concrete structures. This paper reviews the available studies on the mechanical performance of thermally damaged steel and polypropylene hybrid fiber-reinforced concretes. The deterioration mechanism and the influence of the test factors were discussed. The temperature-dependent mechanical properties of the hybrid fiber-reinforced concretes were analyzed, including compressive elastic modulus, compressive strength, flexural strength, and fracture toughness. In addition, the effect of the post-fire re-curing on the mechanical performance of the thermally damaged steel and polypropylene hybrid fiber-reinforced concretes was also reviewed.
2024
Hybrid fiber-reinforced concretes
High temperature
Mechanical properties
Post-fire re-curing
File in questo prodotto:
File Dimensione Formato  
Carvelli_Archives of Civil and Mechanical Engineering_2024.pdf

Accesso riservato

Descrizione: Carvelli_Archives of Civil and Mechanical Engineering_2024
: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 3.93 MB
Formato Adobe PDF
3.93 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1277446
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact