Steel and polypropylene hybrid fiber-reinforced concretes have been widely considered for structural applications due to its superior mechanical performance compared to plain and mono fiber-reinforced concretes. Fire is one of the most serious potential risks to concrete structures. The fire resistance of the steel and polypropylene hybrid fiber-reinforced concretes cannot be ignored when assessing the safety of concrete structures. This paper reviews the available studies on the mechanical performance of thermally damaged steel and polypropylene hybrid fiber-reinforced concretes. The deterioration mechanism and the influence of the test factors were discussed. The temperature-dependent mechanical properties of the hybrid fiber-reinforced concretes were analyzed, including compressive elastic modulus, compressive strength, flexural strength, and fracture toughness. In addition, the effect of the post-fire re-curing on the mechanical performance of the thermally damaged steel and polypropylene hybrid fiber-reinforced concretes was also reviewed.
A review on the mechanical characteristics of thermally damaged steel and polypropylene hybrid fiber-reinforced concretes
Biolzi, Luigi;Carvelli, Valter;
2024-01-01
Abstract
Steel and polypropylene hybrid fiber-reinforced concretes have been widely considered for structural applications due to its superior mechanical performance compared to plain and mono fiber-reinforced concretes. Fire is one of the most serious potential risks to concrete structures. The fire resistance of the steel and polypropylene hybrid fiber-reinforced concretes cannot be ignored when assessing the safety of concrete structures. This paper reviews the available studies on the mechanical performance of thermally damaged steel and polypropylene hybrid fiber-reinforced concretes. The deterioration mechanism and the influence of the test factors were discussed. The temperature-dependent mechanical properties of the hybrid fiber-reinforced concretes were analyzed, including compressive elastic modulus, compressive strength, flexural strength, and fracture toughness. In addition, the effect of the post-fire re-curing on the mechanical performance of the thermally damaged steel and polypropylene hybrid fiber-reinforced concretes was also reviewed.File | Dimensione | Formato | |
---|---|---|---|
Carvelli_Archives of Civil and Mechanical Engineering_2024.pdf
Accesso riservato
Descrizione: Carvelli_Archives of Civil and Mechanical Engineering_2024
:
Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione
3.93 MB
Formato
Adobe PDF
|
3.93 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.