We prove the existence of at least two positive weak solutions for mixed local-nonlocal singular and critical semilinear elliptic problems in the spirit of Hirano et al. (J Differ Equ 189(2):487-512, 2003), extending the recent results in Garain (J Geom Anal 33:212, 2023) concerning singular problems and, at the same time, the results in Biagi et al. (A Brezis-Nirenberg type result for mixed local and nonlocal operators, https://arxiv.org/abs/2209.07502, 2023) regarding critical problems.

Multiplicity of positive solutions for mixed local-nonlocal singular critical problems

Stefano Biagi;
2024-01-01

Abstract

We prove the existence of at least two positive weak solutions for mixed local-nonlocal singular and critical semilinear elliptic problems in the spirit of Hirano et al. (J Differ Equ 189(2):487-512, 2003), extending the recent results in Garain (J Geom Anal 33:212, 2023) concerning singular problems and, at the same time, the results in Biagi et al. (A Brezis-Nirenberg type result for mixed local and nonlocal operators, https://arxiv.org/abs/2209.07502, 2023) regarding critical problems.
2024
35J75
35M12
35B33
File in questo prodotto:
File Dimensione Formato  
s00526-024-02819-0.pdf

Accesso riservato

: Publisher’s version
Dimensione 720.89 kB
Formato Adobe PDF
720.89 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1277333
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact