Given any Γ=γ(S^1)⊂R^2, image of a Lipschitz curve γ:S^1→R^2, not necessarily injective, we provide an explicit formula for computing the value of (Formula presented.) where the infimum is computed among all Lipschitz maps u:B_1(0)→R^2 having boundary datum γ. This coincides with the area of a minimal disk spanning Γ, i.e., a solution of the Plateau problem of disk type. The novelty of the results relies in the fact that we do not assume the curve γ to be injective and our formula allows arbitrary self-intersections.

On the singular planar Plateau problem

Caroccia Marco;
2024-01-01

Abstract

Given any Γ=γ(S^1)⊂R^2, image of a Lipschitz curve γ:S^1→R^2, not necessarily injective, we provide an explicit formula for computing the value of (Formula presented.) where the infimum is computed among all Lipschitz maps u:B_1(0)→R^2 having boundary datum γ. This coincides with the area of a minimal disk spanning Γ, i.e., a solution of the Plateau problem of disk type. The novelty of the results relies in the fact that we do not assume the curve γ to be injective and our formula allows arbitrary self-intersections.
2024
Minimal surfaces, Plateau problem
File in questo prodotto:
File Dimensione Formato  
12) On the singular planar Plateau problem.pdf

Accesso riservato

Dimensione 794.2 kB
Formato Adobe PDF
794.2 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1277147
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact