This paper investigates a Cahn-Hilliard-Swift-Hohenberg system, focusing on a three-species chemical mixture subject to physical constraints on volume fractions. The resulting system leads to complex patterns involving a separation into phases as typical of the Cahn-Hilliard equation and small scale stripes and dots as seen in the Swift-Hohenberg equation. We introduce singular potentials of logarithmic type to enhance the model's accuracy in adhering to essential physical constraints. The paper establishes the existence and uniqueness of weak solutions within this extended framework. The insights gained contribute to a deeper understanding of phase separation in complex systems, with potential applications in materials science and related fields. We introduce a stable finite element approximation based on an obstacle formulation. Subsequent numerical simulations demonstrate that the model allows for complex structures as seen in pigment patterns of animals and in porous polymeric materials.

Complex pattern formation governed by a Cahn–Hilliard–Swift–Hohenberg system: Analysis and numerical simulations

Signori, Andrea
2024-01-01

Abstract

This paper investigates a Cahn-Hilliard-Swift-Hohenberg system, focusing on a three-species chemical mixture subject to physical constraints on volume fractions. The resulting system leads to complex patterns involving a separation into phases as typical of the Cahn-Hilliard equation and small scale stripes and dots as seen in the Swift-Hohenberg equation. We introduce singular potentials of logarithmic type to enhance the model's accuracy in adhering to essential physical constraints. The paper establishes the existence and uniqueness of weak solutions within this extended framework. The insights gained contribute to a deeper understanding of phase separation in complex systems, with potential applications in materials science and related fields. We introduce a stable finite element approximation based on an obstacle formulation. Subsequent numerical simulations demonstrate that the model allows for complex structures as seen in pigment patterns of animals and in porous polymeric materials.
2024
Cahn-Hilliard-Swift-Hohenberg equation
phase separation
pattern formation
materials science
singular potentials
well-posedness
numerical simulations
File in questo prodotto:
File Dimensione Formato  
Complex pattern formation governed by a Cahn–Hilliard–Swift–Hohenberg system Analysis and numerical simulations.pdf

Accesso riservato

Dimensione 1.38 MB
Formato Adobe PDF
1.38 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1277024
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact