Electro-chemo-mechanics plays a critical role in the performance and longevity of energy storage systems, such as lithium-ion batteries and hydrogen energy storage. These systems involve multi-material composites comprising both liquid and solid phases, with their behavior influenced by processes in the bulk phases and at their interfaces. Traditional multi-phase theoretical and numerical models often adopt a discrete representation of material interfaces, introducing discontinuities in the problem's fields. The numerical implementation is carried out using special interface elements, a methodology that requires conformal meshes and is not always supported by open-source computing platforms. This paper introduces a novel modeling framework that employs a diffuse representation of material interfaces, inspired by the phase-field method. From a modeling perspective, this approach allows for the consistent coupling of bulk and interface electro-chemo-mechanical processes, adhering to thermodynamic principles. Numerically, the proposed model is particularly suited for simulating real material microstructures using regular meshes, facilitating advanced numerical implementations. The methodology is detailed for a generic multi-material electro-chemo-mechanical system and applied specifically to Li-ion batteries. Numerical examples demonstrate the model's effectiveness in simulating coupled interface processes without resorting to interface elements. This work provides a significant advancement in the simulation of electro-chemo-mechanical systems, offering a robust tool for studying the complex interplay of bulk and interface processes.

A diffuse interface model for electro-chemo-mechanical systems

Magri, M.
2024-01-01

Abstract

Electro-chemo-mechanics plays a critical role in the performance and longevity of energy storage systems, such as lithium-ion batteries and hydrogen energy storage. These systems involve multi-material composites comprising both liquid and solid phases, with their behavior influenced by processes in the bulk phases and at their interfaces. Traditional multi-phase theoretical and numerical models often adopt a discrete representation of material interfaces, introducing discontinuities in the problem's fields. The numerical implementation is carried out using special interface elements, a methodology that requires conformal meshes and is not always supported by open-source computing platforms. This paper introduces a novel modeling framework that employs a diffuse representation of material interfaces, inspired by the phase-field method. From a modeling perspective, this approach allows for the consistent coupling of bulk and interface electro-chemo-mechanical processes, adhering to thermodynamic principles. Numerically, the proposed model is particularly suited for simulating real material microstructures using regular meshes, facilitating advanced numerical implementations. The methodology is detailed for a generic multi-material electro-chemo-mechanical system and applied specifically to Li-ion batteries. Numerical examples demonstrate the model's effectiveness in simulating coupled interface processes without resorting to interface elements. This work provides a significant advancement in the simulation of electro-chemo-mechanical systems, offering a robust tool for studying the complex interplay of bulk and interface processes.
2024
File in questo prodotto:
File Dimensione Formato  
2024EJMS.pdf

Open Access dal 02/11/2025

: Publisher’s version
Dimensione 2.58 MB
Formato Adobe PDF
2.58 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1276676
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact