: Prompt Gamma Imaging (PGI) is a promising technique for range verification in Particle Therapy. This technique was already tested in clinical environment with a knife-edge-collimator camera for proton treatments but remains relatively unexplored for Carbon Ion Radiation Therapy (CIRT). Previous FLUKA simulations suggested that PG profile shifts could be detected in CIRT with a precision of ∼ 4 mm ([Formula: see text]) for a particle statistic equal to [Formula: see text] C-ions using a 10 × 10 cm2 camera. An experimental campaign was carried out at CNAO (Pavia, Italy) to verify these results, using a knife-edge-collimator camera prototype based on a 5 × 5 cm2 pixelated LYSO crystal. PG profiles were measured irradiating a plastic phantom with a C-ion pencil beam at clinical energies and intensities, also moving the detector to extend the FOV to 13 × 5 cm2. The prototype detected Bragg-peak shifts with ∼ 4 mm precision for a statistic of [Formula: see text] C-ions ([Formula: see text] for the extended FOV), slightly larger than expected. Nevertheless, the detector demonstrated significant potential for verifying the precision in dose delivery following a treatment fraction, which remains fundamental in the clinical environment. For the first time to our knowledge, range verification based on PGI was applied to a C-ion beam at clinical energy and intensities.

First experimental verification of prompt gamma imaging with carbon ion irradiation

Idrissi, Aicha Bourkadi;Borghi, Giacomo;Caracciolo, Anita;Riboldi, Christian;Carminati, Marco;Fiorini, Carlo
2024-01-01

Abstract

: Prompt Gamma Imaging (PGI) is a promising technique for range verification in Particle Therapy. This technique was already tested in clinical environment with a knife-edge-collimator camera for proton treatments but remains relatively unexplored for Carbon Ion Radiation Therapy (CIRT). Previous FLUKA simulations suggested that PG profile shifts could be detected in CIRT with a precision of ∼ 4 mm ([Formula: see text]) for a particle statistic equal to [Formula: see text] C-ions using a 10 × 10 cm2 camera. An experimental campaign was carried out at CNAO (Pavia, Italy) to verify these results, using a knife-edge-collimator camera prototype based on a 5 × 5 cm2 pixelated LYSO crystal. PG profiles were measured irradiating a plastic phantom with a C-ion pencil beam at clinical energies and intensities, also moving the detector to extend the FOV to 13 × 5 cm2. The prototype detected Bragg-peak shifts with ∼ 4 mm precision for a statistic of [Formula: see text] C-ions ([Formula: see text] for the extended FOV), slightly larger than expected. Nevertheless, the detector demonstrated significant potential for verifying the precision in dose delivery following a treatment fraction, which remains fundamental in the clinical environment. For the first time to our knowledge, range verification based on PGI was applied to a C-ion beam at clinical energy and intensities.
2024
File in questo prodotto:
File Dimensione Formato  
s41598-024-72870-6.pdf

accesso aperto

: Publisher’s version
Dimensione 4.58 MB
Formato Adobe PDF
4.58 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1276390
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact