Communication and video capture from unmanned aerial vehicles (UAVs) offer significant potential for assisting first responders in remote public safety settings. In such uses, millimeter wave (mmWave) wireless links can provide high throughput and low latency connectivity between the UAV and a remote command center. However, maintaining reliable aerial communication in the mmWave bands is challenging due to the need to support high speed beam tracking and overcome blockage. This paper provides a simulation study aimed at assessing the feasibility of public safety UAV connectivity through a 5G link at 28 GHz. Real flight motion traces are captured during maneuvers similar to those expected in public safety settings. The motions traces are then incorporated into a detailed mmWave network simulator that models the channel, blockage, beamforming and full 3GPP protocol stack. We show that 5G mmWave communications can deliver throughput up to 1 Gbps with consistent sub ms latency when the base station is located near the mission area, enabling remote offloading of the UAV control and perception algorithms.

Millimeter Wave Remote UAV Control and Communications for Public Safety Scenarios

Mezzavilla M.;
2019-01-01

Abstract

Communication and video capture from unmanned aerial vehicles (UAVs) offer significant potential for assisting first responders in remote public safety settings. In such uses, millimeter wave (mmWave) wireless links can provide high throughput and low latency connectivity between the UAV and a remote command center. However, maintaining reliable aerial communication in the mmWave bands is challenging due to the need to support high speed beam tracking and overcome blockage. This paper provides a simulation study aimed at assessing the feasibility of public safety UAV connectivity through a 5G link at 28 GHz. Real flight motion traces are captured during maneuvers similar to those expected in public safety settings. The motions traces are then incorporated into a detailed mmWave network simulator that models the channel, blockage, beamforming and full 3GPP protocol stack. We show that 5G mmWave communications can deliver throughput up to 1 Gbps with consistent sub ms latency when the base station is located near the mission area, enabling remote offloading of the UAV control and perception algorithms.
2019
Annual IEEE Communications Society Conference on Sensor, Mesh and Ad Hoc Communications and Networks workshops
mmWave
performance evaluation
remote control
UAV
File in questo prodotto:
File Dimensione Formato  
Millimeter_Wave_Remote_UAV_Control_and_Communications_for_Public_Safety_Scenarios.pdf

Accesso riservato

Dimensione 2.22 MB
Formato Adobe PDF
2.22 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1276362
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 23
  • ???jsp.display-item.citation.isi??? ND
social impact