The increasing demand of data, along with the spectrum scarcity, are motivating a urgent shift towards exploiting new bands. This is the main reason behind identifying mmWaves as the key disruptive enabling technology for 5G cellular networks. Indeed, utilizing new bands means facing new challenges; in this context, they are mainly related to the radio propagation, which is shorter in range and more sensitive to obstacles. The resulting key aspects that need to be taken into account when designing mmWave cellular systems are directionality and link intermittency. The lack of network level results motivated this work, which aims at providing the first of a kind open source mmWave framework, based on the network simulator ns-3. The main focus of this work is the modeling of customizable channel, physical (PHY) and medium access control (MAC) layers for mmWave systems. The overall design and architecture of the model are discussed in details. Finally, the validity of our proposed framework is corroborated through the simulation of a simple scenario.
5G MmWave module for the ns-3 network simulator
Mezzavilla M.;
2015-01-01
Abstract
The increasing demand of data, along with the spectrum scarcity, are motivating a urgent shift towards exploiting new bands. This is the main reason behind identifying mmWaves as the key disruptive enabling technology for 5G cellular networks. Indeed, utilizing new bands means facing new challenges; in this context, they are mainly related to the radio propagation, which is shorter in range and more sensitive to obstacles. The resulting key aspects that need to be taken into account when designing mmWave cellular systems are directionality and link intermittency. The lack of network level results motivated this work, which aims at providing the first of a kind open source mmWave framework, based on the network simulator ns-3. The main focus of this work is the modeling of customizable channel, physical (PHY) and medium access control (MAC) layers for mmWave systems. The overall design and architecture of the model are discussed in details. Finally, the validity of our proposed framework is corroborated through the simulation of a simple scenario.File | Dimensione | Formato | |
---|---|---|---|
3gpp.pdf
Accesso riservato
:
Publisher’s version
Dimensione
1.17 MB
Formato
Adobe PDF
|
1.17 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.