The increasing demand of data, along with the spectrum scarcity, are motivating a urgent shift towards exploiting new bands. This is the main reason behind identifying mmWaves as the key disruptive enabling technology for 5G cellular networks. Indeed, utilizing new bands means facing new challenges; in this context, they are mainly related to the radio propagation, which is shorter in range and more sensitive to obstacles. The resulting key aspects that need to be taken into account when designing mmWave cellular systems are directionality and link intermittency. The lack of network level results motivated this work, which aims at providing the first of a kind open source mmWave framework, based on the network simulator ns-3. The main focus of this work is the modeling of customizable channel, physical (PHY) and medium access control (MAC) layers for mmWave systems. The overall design and architecture of the model are discussed in details. Finally, the validity of our proposed framework is corroborated through the simulation of a simple scenario.

5G MmWave module for the ns-3 network simulator

Mezzavilla M.;
2015-01-01

Abstract

The increasing demand of data, along with the spectrum scarcity, are motivating a urgent shift towards exploiting new bands. This is the main reason behind identifying mmWaves as the key disruptive enabling technology for 5G cellular networks. Indeed, utilizing new bands means facing new challenges; in this context, they are mainly related to the radio propagation, which is shorter in range and more sensitive to obstacles. The resulting key aspects that need to be taken into account when designing mmWave cellular systems are directionality and link intermittency. The lack of network level results motivated this work, which aims at providing the first of a kind open source mmWave framework, based on the network simulator ns-3. The main focus of this work is the modeling of customizable channel, physical (PHY) and medium access control (MAC) layers for mmWave systems. The overall design and architecture of the model are discussed in details. Finally, the validity of our proposed framework is corroborated through the simulation of a simple scenario.
2015
MSWiM 2015 - Proceedings of the 18th ACM International Conference on Modeling, Analysis and Simulation of Wireless and Mobile Systems
5G
Cellular
Channel
MAC
MmWave
PHY
Propagation
File in questo prodotto:
File Dimensione Formato  
3gpp.pdf

Accesso riservato

: Publisher’s version
Dimensione 1.17 MB
Formato Adobe PDF
1.17 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1276345
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 72
  • ???jsp.display-item.citation.isi??? ND
social impact