Electromobility applications require several welded connections using demanding materials often in dissimilar combinations. Copper, aluminium, or steel alloys are laser welded for energy storage and traction related components. On the one hand, high power fiber laser sources provide in-source beam shaping solutions able to modify the irradiance profile towards ring-shaped beams. On the other hand, research focused on the effect of the beam shapes on the melting mechanisms and process quality is still in progress. This work studies the effect of different beam profiles on AISI301LN, AA6082 and pure Cu with a 5 kW fiber laser. Linear trends of power over penetration depth as a function of speed confirms the validity of employing the lumped heat capacity model for ring-shaped beams. Moreover, the specific melting fluence is observed to exhibit an exponential decaying trend with the proportion of power allocated in the fiber core, irrespective of tested material.

The effect of in-source spatial beam shaping on the laser welding of e-mobility metals and alloys

Galbusera F.;Borzoni G.;D'Arcangelo S.;Caprio L.;Previtali B.;Demir A. G.
2024-01-01

Abstract

Electromobility applications require several welded connections using demanding materials often in dissimilar combinations. Copper, aluminium, or steel alloys are laser welded for energy storage and traction related components. On the one hand, high power fiber laser sources provide in-source beam shaping solutions able to modify the irradiance profile towards ring-shaped beams. On the other hand, research focused on the effect of the beam shapes on the melting mechanisms and process quality is still in progress. This work studies the effect of different beam profiles on AISI301LN, AA6082 and pure Cu with a 5 kW fiber laser. Linear trends of power over penetration depth as a function of speed confirms the validity of employing the lumped heat capacity model for ring-shaped beams. Moreover, the specific melting fluence is observed to exhibit an exponential decaying trend with the proportion of power allocated in the fiber core, irrespective of tested material.
2024
Proceedings of the 13th CIRP Conference on Photonic Technologies [LANE 2024]
Battery pack
Beam shaping
Electric drive
Laser welding
File in questo prodotto:
File Dimensione Formato  
The effect of in-source spatial beam shaping on the laser welding of e-mobility metals and alloys.pdf

accesso aperto

: Publisher’s version
Dimensione 1.02 MB
Formato Adobe PDF
1.02 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1276195
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact