The millimeter wave bands are being increasingly considered for wireless communication to unmanned aerial vehicles (UAVs). Critical to this undertaking are statistical channel models that describe the distribution of constituent parameters in scenarios of interest. This paper presents a general modeling methodology based on data-training a generative neural network. The proposed generative model has a two-stage structure that first predicts the link state (line-of-sight, non-line-of-sight, or outage), and subsequently feeds this state into a conditional variational autoencoder (VAE) that generates the path losses, delays, and angles of arrival and departure for all the propagation paths. The methodology is demonstrated for 28GHz air-to-ground channels between UAVs and a cellular system in representative urban environments, with training datasets produced through ray tracing. The demonstration extends to both standard base stations (installed at street level and downtilted) as well as dedicated base stations (mounted on rooftops and uptilted). The proposed approach is able to capture complex statistical relations in the data and it significantly outperforms standard 3GPP models, even after refitting the parameters of those models to the data.
Generative Neural Network Channel Modeling for Millimeter-Wave UAV Communication
Mezzavilla, Marco;
2022-01-01
Abstract
The millimeter wave bands are being increasingly considered for wireless communication to unmanned aerial vehicles (UAVs). Critical to this undertaking are statistical channel models that describe the distribution of constituent parameters in scenarios of interest. This paper presents a general modeling methodology based on data-training a generative neural network. The proposed generative model has a two-stage structure that first predicts the link state (line-of-sight, non-line-of-sight, or outage), and subsequently feeds this state into a conditional variational autoencoder (VAE) that generates the path losses, delays, and angles of arrival and departure for all the propagation paths. The methodology is demonstrated for 28GHz air-to-ground channels between UAVs and a cellular system in representative urban environments, with training datasets produced through ray tracing. The demonstration extends to both standard base stations (installed at street level and downtilted) as well as dedicated base stations (mounted on rooftops and uptilted). The proposed approach is able to capture complex statistical relations in the data and it significantly outperforms standard 3GPP models, even after refitting the parameters of those models to the data.File | Dimensione | Formato | |
---|---|---|---|
Generative_Neural_Network_Channel_Modeling_for_Millimeter-Wave_UAV_Communication.pdf
Accesso riservato
:
Publisher’s version
Dimensione
3.33 MB
Formato
Adobe PDF
|
3.33 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.