Silver-based nanomaterials are used as antibacterial agents in a number of applications, including wound dressing, where electrospun materials can effectively promote wound healing and tissue regeneration thanks to their biomimicry, flexibility and breathability. Incorporation of such nanomaterials in electrospun nonwovens is highly challenging if aiming at maximizing stability and antibacterial efficacy and minimizing silver detachment, without neglecting process straightforwardness and scalability. In this work nanostructured silver coatings were deposited by Ionized Jet Deposition (IJD) on Polylactic acid, a medical grade polyester-urethane and Polyamide 6,6 nanofibers. The resulting materials were thoroughly characterized to gain an in-depth view of coating morphology and substrate resistance to the low-temperature deposition process used. Morphology of silver coatings with well-cohesive grains having dimensions from a few tens to a few hundreds of nanometers was analyzed by SEM, TEM and AFM. TGA, DSC, FTIR and GPC showed that the polymers well withstand the deposition process with negligible effects on their properties, the only exception being the polylactic acid that resulted more susceptible to degradation. Finally, the efficacy against S. aureus and E. coli bacterial strains was demonstrated, indicating that electrospun fibers decorated with nanostructured silver by IJD represent a breakthrough solution in the field of antibacterial devices.

Nanodecoration of electrospun polymeric fibers with nanostructured silver coatings by ionized jet deposition for antibacterial tissues

Graziani, Gabriela;
2020-01-01

Abstract

Silver-based nanomaterials are used as antibacterial agents in a number of applications, including wound dressing, where electrospun materials can effectively promote wound healing and tissue regeneration thanks to their biomimicry, flexibility and breathability. Incorporation of such nanomaterials in electrospun nonwovens is highly challenging if aiming at maximizing stability and antibacterial efficacy and minimizing silver detachment, without neglecting process straightforwardness and scalability. In this work nanostructured silver coatings were deposited by Ionized Jet Deposition (IJD) on Polylactic acid, a medical grade polyester-urethane and Polyamide 6,6 nanofibers. The resulting materials were thoroughly characterized to gain an in-depth view of coating morphology and substrate resistance to the low-temperature deposition process used. Morphology of silver coatings with well-cohesive grains having dimensions from a few tens to a few hundreds of nanometers was analyzed by SEM, TEM and AFM. TGA, DSC, FTIR and GPC showed that the polymers well withstand the deposition process with negligible effects on their properties, the only exception being the polylactic acid that resulted more susceptible to degradation. Finally, the efficacy against S. aureus and E. coli bacterial strains was demonstrated, indicating that electrospun fibers decorated with nanostructured silver by IJD represent a breakthrough solution in the field of antibacterial devices.
2020
Electrospinning
Ionized jet deposition
Nanostructured coating
Silver coating
Wound dressing
File in questo prodotto:
File Dimensione Formato  
Nanodecoration of electrospun polymeric fibers with nanostructured silver coatings by ionized jet deposition for antibacterial tissues (3).pdf

Accesso riservato

: Publisher’s version
Dimensione 4.2 MB
Formato Adobe PDF
4.2 MB Adobe PDF   Visualizza/Apri
Nanodecoration of electrospun polymeric fibers with nanostructured silver coatings by ionized jet deposition for antibacterial tissues (3)_AAM_removed.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 12.49 MB
Formato Adobe PDF
12.49 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1275906
Citazioni
  • ???jsp.display-item.citation.pmc??? 13
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 36
social impact