One of the major challenges in the field of wearable devices is to accurately measure physiological parameters during dynamic activities. The aim of this work is to present a completely wearable Wireless Body Sensor Network (WBSN) for cardio-respiratory monitoring during dynamic activities and a validation of the devices composing the WBSN against reference measurement systems. The WBSN is composed of three inertial measurement units (IMUs) to detect the respiratory rate (RR), and of a fourth unit to detect the pulse rate (PR). 30 healthy volunteers (17 men, mean age 25.9 ± 6.0 years, mean weight 68.7 ± 9.7 kg, mean height 170.9 ± 9.5 cm) were enrolled in a validation protocol consisting in walking, running, and cycling. The participants had to simultaneously wear the devices of the WBSN and reference instruments. The IMU-based system proved to be particularly effective in monitoring RR during cycling, with a RMSE of 3.77 bpm for the complete cohort, and during running. The respiratory signal during walking exhibited a frequency content like the stride, making it difficult to properly filter the desired signal content. PR showed good agreement with the reference heart rate monitor. The system exploits information regarding motion to improve RR estimation during dynamic activities thanks to an ad hoc signal processing algorithm.
Validation of a body sensor network for cardiorespiratory monitoring during dynamic activities
Angelucci A.;Camuncoli F.;Bertozzi F.;Galli M.;Tarabini M.;Aliverti A.
2024-01-01
Abstract
One of the major challenges in the field of wearable devices is to accurately measure physiological parameters during dynamic activities. The aim of this work is to present a completely wearable Wireless Body Sensor Network (WBSN) for cardio-respiratory monitoring during dynamic activities and a validation of the devices composing the WBSN against reference measurement systems. The WBSN is composed of three inertial measurement units (IMUs) to detect the respiratory rate (RR), and of a fourth unit to detect the pulse rate (PR). 30 healthy volunteers (17 men, mean age 25.9 ± 6.0 years, mean weight 68.7 ± 9.7 kg, mean height 170.9 ± 9.5 cm) were enrolled in a validation protocol consisting in walking, running, and cycling. The participants had to simultaneously wear the devices of the WBSN and reference instruments. The IMU-based system proved to be particularly effective in monitoring RR during cycling, with a RMSE of 3.77 bpm for the complete cohort, and during running. The respiratory signal during walking exhibited a frequency content like the stride, making it difficult to properly filter the desired signal content. PR showed good agreement with the reference heart rate monitor. The system exploits information regarding motion to improve RR estimation during dynamic activities thanks to an ad hoc signal processing algorithm.File | Dimensione | Formato | |
---|---|---|---|
Validation_of_a_body_sensor_network_for_cardiorespiratory_monitoring_during_dynamic_activities.pdf
accesso aperto
:
Publisher’s version
Dimensione
7.07 MB
Formato
Adobe PDF
|
7.07 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.