One of the major challenges in the field of wearable devices is to accurately measure physiological parameters during dynamic activities. The aim of this work is to present a completely wearable Wireless Body Sensor Network (WBSN) for cardio-respiratory monitoring during dynamic activities and a validation of the devices composing the WBSN against reference measurement systems. The WBSN is composed of three inertial measurement units (IMUs) to detect the respiratory rate (RR), and of a fourth unit to detect the pulse rate (PR). 30 healthy volunteers (17 men, mean age 25.9 ± 6.0 years, mean weight 68.7 ± 9.7 kg, mean height 170.9 ± 9.5 cm) were enrolled in a validation protocol consisting in walking, running, and cycling. The participants had to simultaneously wear the devices of the WBSN and reference instruments. The IMU-based system proved to be particularly effective in monitoring RR during cycling, with a RMSE of 3.77 bpm for the complete cohort, and during running. The respiratory signal during walking exhibited a frequency content like the stride, making it difficult to properly filter the desired signal content. PR showed good agreement with the reference heart rate monitor. The system exploits information regarding motion to improve RR estimation during dynamic activities thanks to an ad hoc signal processing algorithm.

Validation of a body sensor network for cardiorespiratory monitoring during dynamic activities

Angelucci A.;Camuncoli F.;Bertozzi F.;Galli M.;Tarabini M.;Aliverti A.
2024-01-01

Abstract

One of the major challenges in the field of wearable devices is to accurately measure physiological parameters during dynamic activities. The aim of this work is to present a completely wearable Wireless Body Sensor Network (WBSN) for cardio-respiratory monitoring during dynamic activities and a validation of the devices composing the WBSN against reference measurement systems. The WBSN is composed of three inertial measurement units (IMUs) to detect the respiratory rate (RR), and of a fourth unit to detect the pulse rate (PR). 30 healthy volunteers (17 men, mean age 25.9 ± 6.0 years, mean weight 68.7 ± 9.7 kg, mean height 170.9 ± 9.5 cm) were enrolled in a validation protocol consisting in walking, running, and cycling. The participants had to simultaneously wear the devices of the WBSN and reference instruments. The IMU-based system proved to be particularly effective in monitoring RR during cycling, with a RMSE of 3.77 bpm for the complete cohort, and during running. The respiratory signal during walking exhibited a frequency content like the stride, making it difficult to properly filter the desired signal content. PR showed good agreement with the reference heart rate monitor. The system exploits information regarding motion to improve RR estimation during dynamic activities thanks to an ad hoc signal processing algorithm.
2024
Cardiorespiratory monitoring
Dynamic activities
Wearable devices
Wireless body sensor network
File in questo prodotto:
File Dimensione Formato  
Validation_of_a_body_sensor_network_for_cardiorespiratory_monitoring_during_dynamic_activities.pdf

accesso aperto

: Publisher’s version
Dimensione 7.07 MB
Formato Adobe PDF
7.07 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1274003
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact