Boron neutron capture therapy exploits 10B(n,alpha)7Li reactions for targeted tumor destruction. In this work, we aimed at developing a dose monitoring system based on the detection of 478 keV gamma rays emitted by the reactions, which is very challenging due to the severe background present. We investigated a compact gammaray detector with a pinhole collimator and shielding housing. Experimental nuclear reactor measurements involved varying boron concentrations and artificial shifts of the sources. The system successfully resolved the 478 keV photopeak and detected 1 cm lateral displacements, confirming its suitability for precise boron dose monitoring.
A compact scintillator-based detector with collimator and shielding for dose monitoring in boron neutron capture therapy
Caracciolo, Anita;Ferri, Tommaso;Borghi, Giacomo;Carminati, Marco;Fiorini, Carlo
2024-01-01
Abstract
Boron neutron capture therapy exploits 10B(n,alpha)7Li reactions for targeted tumor destruction. In this work, we aimed at developing a dose monitoring system based on the detection of 478 keV gamma rays emitted by the reactions, which is very challenging due to the severe background present. We investigated a compact gammaray detector with a pinhole collimator and shielding housing. Experimental nuclear reactor measurements involved varying boron concentrations and artificial shifts of the sources. The system successfully resolved the 478 keV photopeak and detected 1 cm lateral displacements, confirming its suitability for precise boron dose monitoring.File | Dimensione | Formato | |
---|---|---|---|
2024 _ PhyRo.pdf
Accesso riservato
:
Publisher’s version
Dimensione
1.09 MB
Formato
Adobe PDF
|
1.09 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.