Landslide movement processes often exhibit complex paths, introducing the uncertainty of landslide movement paths, and challenging landslide hazard prediction and pre-disaster prevention and control. In this study, we employed numerical simulations to investigate the dynamic processes with complex paths of the Pangjiawan landslide using the 3D discrete element method. A scenario simulation was conducted to evaluate the stability of the landslide, incorporating arched anti-slide piles, and the reinforcing effect of arch anti-slide piles on the Pangjiayan landslide under different rise-span ratios and pile spacing was analyzed in depth. The results indicate that the Pangjiawan landslide in mountainous notch topography exhibits a complex movement path with turning and convergence behaviors, and arched anti-slide piles are more effective in stabilizing the landslide than traditional linear anti-slide piles. When the embedded depth of the arched anti-slide piles remains consistent, higher rise-span ratios result in more significant synergistic effects between the piles and the surrounding soil. Moreover, even with increased pile spacing and a reduction in the number of anti-slide piles, the landslide displacement after reinforcement with arched anti-slide piles is lower than traditional linear anti-slide piles. The research provides valuable insights into the dynamics of landslide movements, emphasizing the superior reinforcement capabilities of arched anti-slide piles. This contributes to our understanding of landslide mitigation strategies in challenging topography.

Complex sliding characteristics of landslides and evaluation of the reinforcement with arched anti-slide piles based on 3D discrete element method: a case study

Fumagalli, Alessio;
2024-01-01

Abstract

Landslide movement processes often exhibit complex paths, introducing the uncertainty of landslide movement paths, and challenging landslide hazard prediction and pre-disaster prevention and control. In this study, we employed numerical simulations to investigate the dynamic processes with complex paths of the Pangjiawan landslide using the 3D discrete element method. A scenario simulation was conducted to evaluate the stability of the landslide, incorporating arched anti-slide piles, and the reinforcing effect of arch anti-slide piles on the Pangjiayan landslide under different rise-span ratios and pile spacing was analyzed in depth. The results indicate that the Pangjiawan landslide in mountainous notch topography exhibits a complex movement path with turning and convergence behaviors, and arched anti-slide piles are more effective in stabilizing the landslide than traditional linear anti-slide piles. When the embedded depth of the arched anti-slide piles remains consistent, higher rise-span ratios result in more significant synergistic effects between the piles and the surrounding soil. Moreover, even with increased pile spacing and a reduction in the number of anti-slide piles, the landslide displacement after reinforcement with arched anti-slide piles is lower than traditional linear anti-slide piles. The research provides valuable insights into the dynamics of landslide movements, emphasizing the superior reinforcement capabilities of arched anti-slide piles. This contributes to our understanding of landslide mitigation strategies in challenging topography.
2024
Pangjiawan landslide
Mountain-notch topography
Complex moving path
Arched anti-slide piles
Discrete element method
File in questo prodotto:
File Dimensione Formato  
43.pdf

accesso aperto

Dimensione 4.62 MB
Formato Adobe PDF
4.62 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1272950
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 4
social impact