Maintenance is a crucial aspect of the process industry affecting economic and efficiency losses. Among different approaches, predictive maintenance allows for anticipating failure, thus reducing downtime. This work explores a data-driven approach to predictive maintenance by comparing the performance of two different statistical models in extrapolating the future performance of an industrial furnace. The models of interest are a polynomial regression model and a Gaussian process regression model, compared using rolling cross-validation. Moreover, three different machine learning techniques were compared during the training phase: cross-validation, ensemble method and train/test split. The models were trained on real-time series data collected from the distributed control system of a refinery plant. The best performance was obtained with the Gaussian process regression model trained with a train/test split approach. The resulting model can satisfactorily extrapolate the performance of a process furnace over a relatively short-term period.

Predicting the performance of an industrial furnace using Gaussian process and linear regression: A comparison

Manenti F.
2024-01-01

Abstract

Maintenance is a crucial aspect of the process industry affecting economic and efficiency losses. Among different approaches, predictive maintenance allows for anticipating failure, thus reducing downtime. This work explores a data-driven approach to predictive maintenance by comparing the performance of two different statistical models in extrapolating the future performance of an industrial furnace. The models of interest are a polynomial regression model and a Gaussian process regression model, compared using rolling cross-validation. Moreover, three different machine learning techniques were compared during the training phase: cross-validation, ensemble method and train/test split. The models were trained on real-time series data collected from the distributed control system of a refinery plant. The best performance was obtained with the Gaussian process regression model trained with a train/test split approach. The resulting model can satisfactorily extrapolate the performance of a process furnace over a relatively short-term period.
2024
Furnace
Gaussian process regression
Linear regression
Machine-learning
Predictive maintenance
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0098135423003836-main.pdf

accesso aperto

: Publisher’s version
Dimensione 2.16 MB
Formato Adobe PDF
2.16 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1272631
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 21
  • ???jsp.display-item.citation.isi??? 18
social impact