Neural networks have found application within the Wave Digital Filters (WDFs) framework as data-driven input-output blocks for modeling single one-port or multi-port nonlinear devices in circuit systems. However, traditional neural networks lack predictable bounds for their output derivatives, essential to ensure convergence when simulating circuits with multiple nonlinear elements using fixed-point iterative methods, e.g., the Scattering Iterative Method (SIM). In this study, we address such issue by employing Lipschitz-bounded neural networks for regressing nonlinear WD scattering relations of one-port nonlinearities.

Wave Digital Modeling of Circuits with Multiple One-Port Nonlinearities Based on Lipschitz-Bounded Neural Networks

Oliviero Massi;Alberto Bernardini
2024-01-01

Abstract

Neural networks have found application within the Wave Digital Filters (WDFs) framework as data-driven input-output blocks for modeling single one-port or multi-port nonlinear devices in circuit systems. However, traditional neural networks lack predictable bounds for their output derivatives, essential to ensure convergence when simulating circuits with multiple nonlinear elements using fixed-point iterative methods, e.g., the Scattering Iterative Method (SIM). In this study, we address such issue by employing Lipschitz-bounded neural networks for regressing nonlinear WD scattering relations of one-port nonlinearities.
2024
Proceedings of the 27th International Conference on Digital Audio Effects (DAFx24)
File in questo prodotto:
File Dimensione Formato  
DAFx24___Wave_Digital_Modeling_of_Circuits_with_Multiple_One_Port_Nonlinearities_based_on_Lipschitz_Bounded_Neural_Networks.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 2.26 MB
Formato Adobe PDF
2.26 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1272545
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact