Active camber morphing technology can be used to improve aircraft performance in takeoff and landing flight conditions, while preserving a smooth wing shape. This study begins with the design of a morphing droop nose to be installed on a regional aircraft, and focuses on the manufacturing and testing of a full-scale and fully representative experimental prototype. All work is driven by the morphing shape change, which was optimized to provide the required aerodynamic performance. The adoption of a composite structure that combines a flexible skin with a compliant structure makes this device capable of achieving such a shape change, and sufficiently insensitive to external load variations. These capabilities are successfully demonstrated through experimental testing. A validation phase was conducted based on strain gauge measurements, and a motion capture system was used to identify three-dimensional shape changes due to the morphing. Finally, a validated numerical model is used to assess the aerodynamic performance of the experimental prototype.

Experimental and performance validation of a full-scale morphing droop nose design based on composite compliant structures

De Gaspari, Alessandro;Cavalieri, Vittorio;Ricci, Sergio
2024-01-01

Abstract

Active camber morphing technology can be used to improve aircraft performance in takeoff and landing flight conditions, while preserving a smooth wing shape. This study begins with the design of a morphing droop nose to be installed on a regional aircraft, and focuses on the manufacturing and testing of a full-scale and fully representative experimental prototype. All work is driven by the morphing shape change, which was optimized to provide the required aerodynamic performance. The adoption of a composite structure that combines a flexible skin with a compliant structure makes this device capable of achieving such a shape change, and sufficiently insensitive to external load variations. These capabilities are successfully demonstrated through experimental testing. A validation phase was conducted based on strain gauge measurements, and a motion capture system was used to identify three-dimensional shape changes due to the morphing. Finally, a validated numerical model is used to assess the aerodynamic performance of the experimental prototype.
2024
File in questo prodotto:
File Dimensione Formato  
DEGAA02-24.pdf

accesso aperto

: Publisher’s version
Dimensione 6.52 MB
Formato Adobe PDF
6.52 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1272384
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact