Podocytes, cells of the glomerular filtration barrier, play a crucial role in kidney diseases and are gaining attention as potential targets for new therapies. Brain-Derived Neurotrophic Factor (BDNF) has shown promising results in repairing podocyte damage, but its efficacy via parenteral administration is limited by a short half-life. Low temperature sensitive liposomes (LTSL) are a promising tool for targeted BDNF delivery, preserving its activity after encapsulation. This study aimed to improve LTSL design for efficient BDNF encapsulation and targeted release to podocytes, while maintaining stability and biological activity, and exploiting the conjugation of targeting peptides. While cyclic RGD (cRGD) was used for targeting endothelial cells in vitro, a homing peptide (HITSLLS) was conjugated for more specific uptake by glomerular endothelial cells in vivo. BDNF-loaded LTSL successfully repaired cytoskeleton damage in podocytes and reduced albumin permeability in a glomerular coculture model. cRGD conjugation enhanced endothelial cell targeting and uptake, highlighting an improved therapeutic effect when BDNF release was induced by thermoresponsive liposomal degradation. In vivo, targeted LTSL showed evidence of accumulation in the kidneys, and their BDNF delivery decreased proteinuria and ameliorated kidney histology. These findings highlight the potential of BDNF-LTSL formulations in restoring podocyte function and treating glomerular diseases.

Brain-Derived Neurotrophic Factor-Loaded Low-Temperature-Sensitive liposomes as a drug delivery system for repairing podocyte damage

Huang, Xiaoyi;Li, Min;Espinoza, Maria Isabel Martinez;Zennaro, Cristina;Cellesi, Francesco
2024-01-01

Abstract

Podocytes, cells of the glomerular filtration barrier, play a crucial role in kidney diseases and are gaining attention as potential targets for new therapies. Brain-Derived Neurotrophic Factor (BDNF) has shown promising results in repairing podocyte damage, but its efficacy via parenteral administration is limited by a short half-life. Low temperature sensitive liposomes (LTSL) are a promising tool for targeted BDNF delivery, preserving its activity after encapsulation. This study aimed to improve LTSL design for efficient BDNF encapsulation and targeted release to podocytes, while maintaining stability and biological activity, and exploiting the conjugation of targeting peptides. While cyclic RGD (cRGD) was used for targeting endothelial cells in vitro, a homing peptide (HITSLLS) was conjugated for more specific uptake by glomerular endothelial cells in vivo. BDNF-loaded LTSL successfully repaired cytoskeleton damage in podocytes and reduced albumin permeability in a glomerular coculture model. cRGD conjugation enhanced endothelial cell targeting and uptake, highlighting an improved therapeutic effect when BDNF release was induced by thermoresponsive liposomal degradation. In vivo, targeted LTSL showed evidence of accumulation in the kidneys, and their BDNF delivery decreased proteinuria and ameliorated kidney histology. These findings highlight the potential of BDNF-LTSL formulations in restoring podocyte function and treating glomerular diseases.
2024
BDNF
Low temperature sensitive liposomes
Peptide-functionalized nanocarriers
Podocytes
Protein encapsulation
File in questo prodotto:
File Dimensione Formato  
Huang2024.pdf

accesso aperto

Dimensione 1.03 MB
Formato Adobe PDF
1.03 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1272144
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact