Battery electric vehicles are spreading worldwide as a relevant solution for the decarbonization of the transportation sector, ensuring high volume and weight-based energy density, high efficiency and low cost. Nevertheless, batteries are known to age in a rather complex and conditions-dependent way. This work aims at investigating battery aging resulting from close-to-real world conditions, highlighting single stressors role. Hence, aiming at representativeness for automotive application, an extensive literature review is performed, identifying a wide set of representative conditions together with their specific variations to be investigated. Realistic driving schedules like WLTP is identified and continuously applied in cycling on commercial samples, investigating the capacity loss from a q-OCP perspective with an equilibrium model. In general, loss of lithium inventory is detected as the main degradation parameter, likely related to SEI growth. Recharge C-rate and load profile appear as poorly-affecting degradation, while a dominant role is associated with operating temperature. Interestingly, temperature and cycling-related degradation appears to be independent and their effects can be effectively superimposed. Loss of active positive electrode material seems particularly affected by cycling depth of discharge, likely having mechanical origin as particle cracking.

Degradation of lithium-ion batteries under automotive-like conditions: aging tests, capacity loss and q-OCP interpretation

Sordi, G.;Casalegno, A.;Rabissi, C.
2024-01-01

Abstract

Battery electric vehicles are spreading worldwide as a relevant solution for the decarbonization of the transportation sector, ensuring high volume and weight-based energy density, high efficiency and low cost. Nevertheless, batteries are known to age in a rather complex and conditions-dependent way. This work aims at investigating battery aging resulting from close-to-real world conditions, highlighting single stressors role. Hence, aiming at representativeness for automotive application, an extensive literature review is performed, identifying a wide set of representative conditions together with their specific variations to be investigated. Realistic driving schedules like WLTP is identified and continuously applied in cycling on commercial samples, investigating the capacity loss from a q-OCP perspective with an equilibrium model. In general, loss of lithium inventory is detected as the main degradation parameter, likely related to SEI growth. Recharge C-rate and load profile appear as poorly-affecting degradation, while a dominant role is associated with operating temperature. Interestingly, temperature and cycling-related degradation appears to be independent and their effects can be effectively superimposed. Loss of active positive electrode material seems particularly affected by cycling depth of discharge, likely having mechanical origin as particle cracking.
2024
Degradation
Diagnostics
Driving cycle
Capacity loss
Lithium-ion battery
File in questo prodotto:
File Dimensione Formato  
2024. LIB DrivingCycle partA.pdf

accesso aperto

: Publisher’s version
Dimensione 2.94 MB
Formato Adobe PDF
2.94 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1271984
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact