Ocean liming is attracting ever-increasing attention as one of the most suitable and convenient ways of removing carbon dioxide from the atmosphere and combating global warming and the acidification of the oceans at the same time. However, the short-term consequences of Ca(OH)2 [slaked lime] dissolution in seawater have been scarcely studied. In this work, we investigate in detail what happens in the initial stages after the dissolution of slaked lime, analyzing the kinetics of the process and the effects on the physicochemical parameters of seawater. A series of experiments, carried out by varying the seawater conditions (like temperature and salinity) or the liming conditions (like the dispersion in the form of slurry or powder and the concentration) allow us to draw conclusions on the ideal conditions for a more efficient and environmentally friendly liming process.
Chemical Aspect of Ocean Liming for CO2 Removal: Dissolution Kinetics of Calcium Hydroxide in Seawater
Varliero, Selene;Raos, Guido;Macchi, Piero
2024-01-01
Abstract
Ocean liming is attracting ever-increasing attention as one of the most suitable and convenient ways of removing carbon dioxide from the atmosphere and combating global warming and the acidification of the oceans at the same time. However, the short-term consequences of Ca(OH)2 [slaked lime] dissolution in seawater have been scarcely studied. In this work, we investigate in detail what happens in the initial stages after the dissolution of slaked lime, analyzing the kinetics of the process and the effects on the physicochemical parameters of seawater. A series of experiments, carried out by varying the seawater conditions (like temperature and salinity) or the liming conditions (like the dispersion in the form of slurry or powder and the concentration) allow us to draw conclusions on the ideal conditions for a more efficient and environmentally friendly liming process.File | Dimensione | Formato | |
---|---|---|---|
varliero-et-al-2024-chemical-aspect-of-ocean-liming-for-co2-removal-dissolution-kinetics-of-calcium-hydroxide-in.pdf
accesso aperto
Dimensione
3.12 MB
Formato
Adobe PDF
|
3.12 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.