Let Γ ⊆ N be a numerical semigroup. In this paper, we prove an upper bound for the Betti numbers of the semigroup ring of Γ which depends only on the width of Γ, that is, the difference between the largest and the smallest generator of Γ. In this way, we make progress towards a conjecture of Herzog and Stamate [J. Algebra 418 (2014), pp. 8-28]. Moreover, for 4- generated numerical semigroups, the first significant open case, we prove the Herzog-Stamate bound for all but finitely many values of the width.

Bounds for syzygies of monomial curves

Alessio Sammartano
2024-01-01

Abstract

Let Γ ⊆ N be a numerical semigroup. In this paper, we prove an upper bound for the Betti numbers of the semigroup ring of Γ which depends only on the width of Γ, that is, the difference between the largest and the smallest generator of Γ. In this way, we make progress towards a conjecture of Herzog and Stamate [J. Algebra 418 (2014), pp. 8-28]. Moreover, for 4- generated numerical semigroups, the first significant open case, we prove the Herzog-Stamate bound for all but finitely many values of the width.
File in questo prodotto:
File Dimensione Formato  
proc16862.pdf

Accesso riservato

: Publisher’s version
Dimensione 248.77 kB
Formato Adobe PDF
248.77 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1270650
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 3
social impact