This work, performed in the framework of the H2020 EU project “DESOLINATION”, analyses the coupling between CSP plants using transcritical power cycles with CO2-mixtures and an innovative thermal desalination technique based on Forward Osmosis. Calculations are presented for a large scale CSP plant with central tower receiver and direct storage with solar salts in Dubai, adopting the mixtures CO2+SO2 and CO2+C6F6 in the power cycles. The heat rejected from the cycle condenser is recovered directly by the FO plant, where the draw solute is heated up from 40 °C to 76 °C, to allow for the regeneration of the draw solution used in the forward osmosis membrane. The thermo-responsive polymer adopted is PAGB2000, already considered in literature as a promising option. Results show a very effective synergy between the electricity and the freshwater production: high yearly solar to electric efficiencies are possible (around 19%), with a low freshwater specific thermal consumption (around 100 kWhth/m3). The proposed desalination method is more effective than a conventional MED system (with +50% of yearly freshwater produced), while a larger solar field (+28% in surface area) is necessary for a PV+RO plant to produce annually both the energy and freshwater produced by the CSP+FO plants.
Thermal Desalination Through Forward Osmosis Coupled With CO2-Mixture Power Cycles for CSP Applications
Carraretto, Igor Matteo;Morosini, Ettore;Simonetti, Riccardo;Astolfi, Marco;Binotti, Marco;Manzolini, Giampaolo
2024-01-01
Abstract
This work, performed in the framework of the H2020 EU project “DESOLINATION”, analyses the coupling between CSP plants using transcritical power cycles with CO2-mixtures and an innovative thermal desalination technique based on Forward Osmosis. Calculations are presented for a large scale CSP plant with central tower receiver and direct storage with solar salts in Dubai, adopting the mixtures CO2+SO2 and CO2+C6F6 in the power cycles. The heat rejected from the cycle condenser is recovered directly by the FO plant, where the draw solute is heated up from 40 °C to 76 °C, to allow for the regeneration of the draw solution used in the forward osmosis membrane. The thermo-responsive polymer adopted is PAGB2000, already considered in literature as a promising option. Results show a very effective synergy between the electricity and the freshwater production: high yearly solar to electric efficiencies are possible (around 19%), with a low freshwater specific thermal consumption (around 100 kWhth/m3). The proposed desalination method is more effective than a conventional MED system (with +50% of yearly freshwater produced), while a larger solar field (+28% in surface area) is necessary for a PV+RO plant to produce annually both the energy and freshwater produced by the CSP+FO plants.File | Dimensione | Formato | |
---|---|---|---|
789_Carraretto_et_al..pdf
accesso aperto
Descrizione: Articolo
:
Publisher’s version
Dimensione
1.06 MB
Formato
Adobe PDF
|
1.06 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.