The interplay of the glass transition with liquid-liquid phase separation (LLPS) is a subject of intense debate. We use the scattering invariant Q to probe how approaching the glass transition affects the shape of LLPS boundaries in the temperature/volume fraction plane. Two protein systems featuring kinetic arrest with a lower and an upper critical solution temperature phase behavior, respectively, are studied varying the quench depth. Using Q we noninvasively identify system-dependent differences for the effect of glass formation on the LLPS boundary. The glassy dense phase appears to enter the coexistence region for the albumin-YCl3 system, whereas it follows the equilibrium binodal for the γ-globulin-PEG system.
Interplay between glass formation and liquid-liquid phase separation revealed by the scattering invariant
Mariani A.;
2020-01-01
Abstract
The interplay of the glass transition with liquid-liquid phase separation (LLPS) is a subject of intense debate. We use the scattering invariant Q to probe how approaching the glass transition affects the shape of LLPS boundaries in the temperature/volume fraction plane. Two protein systems featuring kinetic arrest with a lower and an upper critical solution temperature phase behavior, respectively, are studied varying the quench depth. Using Q we noninvasively identify system-dependent differences for the effect of glass formation on the LLPS boundary. The glassy dense phase appears to enter the coexistence region for the albumin-YCl3 system, whereas it follows the equilibrium binodal for the γ-globulin-PEG system.| File | Dimensione | Formato | |
|---|---|---|---|
|
da-vela-et-al-2020-interplay-between-glass-formation-and-liquid-liquid-phase-separation-revealed-by-the-scattering.pdf
Accesso riservato
:
Publisher’s version
Dimensione
1.59 MB
Formato
Adobe PDF
|
1.59 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


