Ionic liquids (ILs) have been widely explored as alternative electrolytes to combat the safety issues associated with conventional organic electrolytes. However, hindered by their relatively high viscosity, the electrochemical performances of IL-based cells are generally assessed at medium-to-high temperature and limited cycling rate. A suitable combination of alkoxy-functionalized cations with asymmetric imide anions can effectively lower the lattice energy and improve the fluidity of the IL material. The Li/Li1.2Ni0.2Mn0.6O2 cell employing N-N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium (fluorosulfonyl)(trifluoromethanesulfonyl)imide (DEMEFTFSI)-based electrolyte delivered an initial capacity of 153 mAh g−1 within the voltage range of 2.5–4.6 V, with a capacity retention of 65.5 % after 500 cycles and stable coulombic efficiencies exceeding 99.5 %. Moreover, preliminary battery tests demonstrated that the drawbacks in terms of rate capability could be improved by using Li-concentrated IL-based electrolytes. The improved room-temperature rate performance of these electrolytes was likely owing to the formation of Li+-containing aggregate species, changing the concentration-dependent Li-ion transport mechanism.
Concentrated ionic-liquid-based electrolytes for high-voltage lithium batteries with improved performance at room temperature
Mariani A.;
2019-01-01
Abstract
Ionic liquids (ILs) have been widely explored as alternative electrolytes to combat the safety issues associated with conventional organic electrolytes. However, hindered by their relatively high viscosity, the electrochemical performances of IL-based cells are generally assessed at medium-to-high temperature and limited cycling rate. A suitable combination of alkoxy-functionalized cations with asymmetric imide anions can effectively lower the lattice energy and improve the fluidity of the IL material. The Li/Li1.2Ni0.2Mn0.6O2 cell employing N-N-diethyl-N-methyl-N-(2-methoxyethyl)ammonium (fluorosulfonyl)(trifluoromethanesulfonyl)imide (DEMEFTFSI)-based electrolyte delivered an initial capacity of 153 mAh g−1 within the voltage range of 2.5–4.6 V, with a capacity retention of 65.5 % after 500 cycles and stable coulombic efficiencies exceeding 99.5 %. Moreover, preliminary battery tests demonstrated that the drawbacks in terms of rate capability could be improved by using Li-concentrated IL-based electrolytes. The improved room-temperature rate performance of these electrolytes was likely owing to the formation of Li+-containing aggregate species, changing the concentration-dependent Li-ion transport mechanism.File | Dimensione | Formato | |
---|---|---|---|
ChemSusChem - 2019 - Gao - Concentrated Ionic%E2%80%90Liquid%E2%80%90Based Electrolytes for High%E2%80%90Voltage Lithium Batteries with Improved.pdf
accesso aperto
:
Publisher’s version
Dimensione
1.6 MB
Formato
Adobe PDF
|
1.6 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.