Let Gamma be a finitely generated group and let (X, mu X) be an ergodic standard Borel probability Gamma-space. Suppose that X is a Hermitian symmetric space not of tube type and assume that G = Isom(X)(degrees )is simple. Given a Zariski dense measurable cocycle sigma: Gamma x X -> G,we define the notion of parametrized Kahler class and we show tha tit completely determines the cocycle up to cohomology.
Parametrized Kahler class and Zariski dense orbital 1-cohomology
A. Savini
2023-01-01
Abstract
Let Gamma be a finitely generated group and let (X, mu X) be an ergodic standard Borel probability Gamma-space. Suppose that X is a Hermitian symmetric space not of tube type and assume that G = Isom(X)(degrees )is simple. Given a Zariski dense measurable cocycle sigma: Gamma x X -> G,we define the notion of parametrized Kahler class and we show tha tit completely determines the cocycle up to cohomology.File in questo prodotto:
| File | Dimensione | Formato | |
|---|---|---|---|
|
MRL_30_06_A09.pdf
Accesso riservato
Dimensione
343.94 kB
Formato
Adobe PDF
|
343.94 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


