Quantum mechanics/molecular mechanics (QM/MM) calculations are widely used embedding techniques to computationally investigate enzyme reactions. In most QM/MM computations, the quantum mechanical region is treated through density functional theory (DFT), which offers the best compromise between chemical accuracy and computational cost. Nevertheless, to obtain more accurate results, one should resort to wave function-based methods, which however lead to a much larger computational cost already for relatively small QM subsystems. To overcome this drawback, we propose the coupling of our QM/ELMO (quantum mechanics/extremely localized molecular orbital) approach with molecular mechanics, thus introducing the three-layer QM/ELMO/MM technique. The QM/ELMO strategy is an embedding method in which the chemically relevant part of the system is treated at the quantum mechanical level, while the rest is described through frozen ELMOs. Since the QM/ELMO method reproduces results of fully QM computations within chemical accuracy and with a much lower computational effort, it can be considered a suitable strategy to extend the range of applicability and accuracy of the QM/MM scheme. In this paper, other than briefly presenting the theoretical bases of the QM/ELMO/MM technique, we will also discuss its validation on the well-tested deprotonation of acetyl coenzyme A by aspartate in citrate synthase.

Three-Layer Multiscale Approach Based on Extremely Localized Molecular Orbitals to Investigate Enzyme Reactions

Genoni A.
2021-01-01

Abstract

Quantum mechanics/molecular mechanics (QM/MM) calculations are widely used embedding techniques to computationally investigate enzyme reactions. In most QM/MM computations, the quantum mechanical region is treated through density functional theory (DFT), which offers the best compromise between chemical accuracy and computational cost. Nevertheless, to obtain more accurate results, one should resort to wave function-based methods, which however lead to a much larger computational cost already for relatively small QM subsystems. To overcome this drawback, we propose the coupling of our QM/ELMO (quantum mechanics/extremely localized molecular orbital) approach with molecular mechanics, thus introducing the three-layer QM/ELMO/MM technique. The QM/ELMO strategy is an embedding method in which the chemically relevant part of the system is treated at the quantum mechanical level, while the rest is described through frozen ELMOs. Since the QM/ELMO method reproduces results of fully QM computations within chemical accuracy and with a much lower computational effort, it can be considered a suitable strategy to extend the range of applicability and accuracy of the QM/MM scheme. In this paper, other than briefly presenting the theoretical bases of the QM/ELMO/MM technique, we will also discuss its validation on the well-tested deprotonation of acetyl coenzyme A by aspartate in citrate synthase.
File in questo prodotto:
File Dimensione Formato  
Articolo57.pdf

Accesso riservato

: Publisher’s version
Dimensione 1.18 MB
Formato Adobe PDF
1.18 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1269541
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
social impact