Metasurfaces represent a new frontier in materials science paving for unprecedented methods of controlling electromagnetic waves, with a range of applications spanning from sensing to imaging and communications. For pulsed terahertz (THz) generation, metasurfaces offer a gateway to tuneable thin emitters that can be utilized for large-area imaging, microscopy, and spectroscopy. In literature, THz-emitting metasurfaces generally exhibit high absorption, being based either on metals or on semiconductors excited in highly resonant regimes. Here, the use of a fully dielectric semiconductor exploiting morphology-mediated resonances and inherent quadratic nonlinear response is proposed. This system exhibits a remarkable 40-fold efficiency enhancement compared to the unpatterned at the peak of the optimized wavelength range, demonstrating its potential as a scalable emitter design.Here, dielectric metasurfaces for pulsed terahertz (THz) generation are explored. The use of a fully dielectric semiconductor exploiting morphology-mediated resonances and inherent quadratic nonlinear response is proposed. This system exhibits a remarkable 40-fold efficiency enhancement compared to the unpatterned at the peak of the optimized wavelength range, demonstrating its potential as a scalable emitter design. image

Resonant Fully Dielectric Metasurfaces for Ultrafast Terahertz Pulse Generation

Arregui Leon, Unai;Della Valle, Giuseppe;
2024-01-01

Abstract

Metasurfaces represent a new frontier in materials science paving for unprecedented methods of controlling electromagnetic waves, with a range of applications spanning from sensing to imaging and communications. For pulsed terahertz (THz) generation, metasurfaces offer a gateway to tuneable thin emitters that can be utilized for large-area imaging, microscopy, and spectroscopy. In literature, THz-emitting metasurfaces generally exhibit high absorption, being based either on metals or on semiconductors excited in highly resonant regimes. Here, the use of a fully dielectric semiconductor exploiting morphology-mediated resonances and inherent quadratic nonlinear response is proposed. This system exhibits a remarkable 40-fold efficiency enhancement compared to the unpatterned at the peak of the optimized wavelength range, demonstrating its potential as a scalable emitter design.Here, dielectric metasurfaces for pulsed terahertz (THz) generation are explored. The use of a fully dielectric semiconductor exploiting morphology-mediated resonances and inherent quadratic nonlinear response is proposed. This system exhibits a remarkable 40-fold efficiency enhancement compared to the unpatterned at the peak of the optimized wavelength range, demonstrating its potential as a scalable emitter design. image
2024
dielectric
metasurfaces
terahertz
File in questo prodotto:
File Dimensione Formato  
Peters_AOM_2024.pdf

accesso aperto

: Publisher’s version
Dimensione 1 MB
Formato Adobe PDF
1 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1269507
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact