We identify a class of measure-valued solutions of the barotropic Euler system on a general (unbounded) spatial domain as a vanishing viscosity limit for the compressible Navier-Stokes system. Then we establish the weak (measure-valued)-strong uniqueness principle, and, as a corollary, we obtain strong convergence to the Euler system on the lifespan of the strong solution.

Vanishing viscosity limit for the compressible Navier-Stokes system via measure-valued solutions

Danica Basaric
2020-01-01

Abstract

We identify a class of measure-valued solutions of the barotropic Euler system on a general (unbounded) spatial domain as a vanishing viscosity limit for the compressible Navier-Stokes system. Then we establish the weak (measure-valued)-strong uniqueness principle, and, as a corollary, we obtain strong convergence to the Euler system on the lifespan of the strong solution.
File in questo prodotto:
File Dimensione Formato  
11311-1269488_Basaric.pdf

accesso aperto

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 275.46 kB
Formato Adobe PDF
275.46 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1269488
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact