Spin waves are collective perturbations in the orientation of the magnetic moments in magnetically ordered materials. Their rich phenomenology is intrinsically three-dimensional; however, the three-dimensional imaging of spin waves has so far not been possible. Here, we image the three-dimensional dynamics of spin waves excited in a synthetic antiferromagnet, with nanoscale spatial resolution and sub-ns temporal resolution, using time-resolved magnetic laminography. In this way, we map the distribution of the spin-wave modes throughout the volume of the structure, revealing unexpected depth-dependent profiles originating from the interlayer dipolar interaction. We experimentally demonstrate the existence of complex three-dimensional interference patterns and analyze them via micromagnetic modelling. We find that these patterns are generated by the superposition of spin waves with non-uniform amplitude profiles, and that their features can be controlled by tuning the composition and structure of the magnetic system. Our results open unforeseen possibilities for the study and manipulation of complex spin-wave modes within nanostructures and magnonic devices.The techniques we typically employ to study spin-waves in magnetic materials, such as Brillouin Light Scattering, are two-dimensional. Spin waves, however, are manifestly three-dimensional. Here, Girardi et al. succeed in such three-dimensional imaging of spin waves in a synthetic antiferromagnet using Time-Resolved Soft X-ray Laminography.
Three-dimensional spin-wave dynamics, localization and interference in a synthetic antiferromagnet
Girardi, Davide;Rubini, Guglielmo;Levati, Valerio;Cuccurullo, Simone;Maspero, Federico;Petti, Daniela;Albisetti, Edoardo
2024-01-01
Abstract
Spin waves are collective perturbations in the orientation of the magnetic moments in magnetically ordered materials. Their rich phenomenology is intrinsically three-dimensional; however, the three-dimensional imaging of spin waves has so far not been possible. Here, we image the three-dimensional dynamics of spin waves excited in a synthetic antiferromagnet, with nanoscale spatial resolution and sub-ns temporal resolution, using time-resolved magnetic laminography. In this way, we map the distribution of the spin-wave modes throughout the volume of the structure, revealing unexpected depth-dependent profiles originating from the interlayer dipolar interaction. We experimentally demonstrate the existence of complex three-dimensional interference patterns and analyze them via micromagnetic modelling. We find that these patterns are generated by the superposition of spin waves with non-uniform amplitude profiles, and that their features can be controlled by tuning the composition and structure of the magnetic system. Our results open unforeseen possibilities for the study and manipulation of complex spin-wave modes within nanostructures and magnonic devices.The techniques we typically employ to study spin-waves in magnetic materials, such as Brillouin Light Scattering, are two-dimensional. Spin waves, however, are manifestly three-dimensional. Here, Girardi et al. succeed in such three-dimensional imaging of spin waves in a synthetic antiferromagnet using Time-Resolved Soft X-ray Laminography.File | Dimensione | Formato | |
---|---|---|---|
s41467-024-47339-9.pdf
accesso aperto
Descrizione: Published Manuscript
:
Publisher’s version
Dimensione
1.87 MB
Formato
Adobe PDF
|
1.87 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.