In X-ray constrained wavefunction (XCW) fitting, external information, such as electron correlation and polarization, is included into a single-determinantal isolated-molecule wavefunction. In a first step, we show that the extraction of these two physical effects by XCW fitting is complete and accurate by comparing to theoretical reference calculations. In a second step, we show that fitting to data from single-crystal x-ray diffraction measurements provides the same results qualitatively and how the physical effects can be separated, although always inherently convolved in the experiment. We further demonstrate that exchange-correlation potentials are systematically affected by XCW fitting in a physically meaningful way, which could be exploited for method development in quantum chemistry, subject to some remaining challenges that we also outline.
The effects of experimentally obtained electron correlation and polarization on electron densities and exchange-correlation potentials
Genoni A.;
2023-01-01
Abstract
In X-ray constrained wavefunction (XCW) fitting, external information, such as electron correlation and polarization, is included into a single-determinantal isolated-molecule wavefunction. In a first step, we show that the extraction of these two physical effects by XCW fitting is complete and accurate by comparing to theoretical reference calculations. In a second step, we show that fitting to data from single-crystal x-ray diffraction measurements provides the same results qualitatively and how the physical effects can be separated, although always inherently convolved in the experiment. We further demonstrate that exchange-correlation potentials are systematically affected by XCW fitting in a physically meaningful way, which could be exploited for method development in quantum chemistry, subject to some remaining challenges that we also outline.File | Dimensione | Formato | |
---|---|---|---|
Articolo66-compressed.pdf
accesso aperto
Dimensione
1.04 MB
Formato
Adobe PDF
|
1.04 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.