Parkinson’s disease is a neurodegenerative pathology difficult to diagnose. Researches have confirmed the presences of death cells in the brain produced by the modification of a protein called alpha-synuclein synuclein in people with Parkinson disease. Currently, a great amount of research is conducted to identify its biomarkers for early diagnostics. Recently, a studio found differences between the alpha- synuclein of the skin from Parkinson’s disease and normal patients. In this paper, we use Raman spectroscopy through a numerical model to simulate the vibrational modes of well-defined finite clusters of alpha-synuclein in normal and pathological state, using the Gaussian09 software. The results of the model in the range of x − y cm−1 are in good agreement with the experimental Raman spectra acquired from human skin with alpha-synuclein in the normal and pathological state.

Analysis of vibrational modes from alpha-synuclein: a theoretical model using density functional theory and Raman spectroscopy

Mendez M. O.;
2020-01-01

Abstract

Parkinson’s disease is a neurodegenerative pathology difficult to diagnose. Researches have confirmed the presences of death cells in the brain produced by the modification of a protein called alpha-synuclein synuclein in people with Parkinson disease. Currently, a great amount of research is conducted to identify its biomarkers for early diagnostics. Recently, a studio found differences between the alpha- synuclein of the skin from Parkinson’s disease and normal patients. In this paper, we use Raman spectroscopy through a numerical model to simulate the vibrational modes of well-defined finite clusters of alpha-synuclein in normal and pathological state, using the Gaussian09 software. The results of the model in the range of x − y cm−1 are in good agreement with the experimental Raman spectra acquired from human skin with alpha-synuclein in the normal and pathological state.
2020
Alpha-synuclein; Density Functional theory; Parkinson’s disease; Raman spectroscopy
File in questo prodotto:
File Dimensione Formato  
Mendez2020E.pdf

Accesso riservato

: Publisher’s version
Dimensione 986.25 kB
Formato Adobe PDF
986.25 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1268458
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact