The increasing penetration of Electric Vehicles (EVs) presents significant challenges in integrating EV chargers. To address this, precise smart EV charging strategies are imperative to prevent a surge in peak power demand and ensure seamless charger integration. In this article, a smart EV charging pool algorithm employing optimal control is proposed. The main objective is to minimize the charge point operator's cost while maximizing its EV chargers’ flexibility. The algorithm adeptly manages the charger pilot signal standard and accommodates the non-ideal behavior of EV batteries across various vehicle types. It ensures the fulfillment of vehicle owners’ preferences regarding the departure state of charge. Additionally, we develop a data-driven characterization of EV workplace chargers, considering power levels and estimated battery capacities. A novel methodology for computing the EV battery's arrival state of charge is also introduced. The efficacy of the EV charging algorithm is evaluated through multiple simulation campaigns, ranging from individual charger responses to comprehensive charging pool analyses. Simulation results are compared with those of a typical minimum-time strategy, revealing cost reductions and significant power savings based on the flexibility of EV chargers. This novel algorithm emerges as a valuable tool for accurately managing the power demanded by an EV charging station, offering flexible services to the electrical grid.

Enhanced EV charging algorithm considering data-driven workplace chargers categorization with multiple vehicle types

Diaz Londono Cesar;Maffezzoni P.;Gruosso G.
2024-01-01

Abstract

The increasing penetration of Electric Vehicles (EVs) presents significant challenges in integrating EV chargers. To address this, precise smart EV charging strategies are imperative to prevent a surge in peak power demand and ensure seamless charger integration. In this article, a smart EV charging pool algorithm employing optimal control is proposed. The main objective is to minimize the charge point operator's cost while maximizing its EV chargers’ flexibility. The algorithm adeptly manages the charger pilot signal standard and accommodates the non-ideal behavior of EV batteries across various vehicle types. It ensures the fulfillment of vehicle owners’ preferences regarding the departure state of charge. Additionally, we develop a data-driven characterization of EV workplace chargers, considering power levels and estimated battery capacities. A novel methodology for computing the EV battery's arrival state of charge is also introduced. The efficacy of the EV charging algorithm is evaluated through multiple simulation campaigns, ranging from individual charger responses to comprehensive charging pool analyses. Simulation results are compared with those of a typical minimum-time strategy, revealing cost reductions and significant power savings based on the flexibility of EV chargers. This novel algorithm emerges as a valuable tool for accurately managing the power demanded by an EV charging station, offering flexible services to the electrical grid.
2024
Electric vehicle charger
Flexibility
Model predictive control
Non-ideal battery
Smart charger
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S259011682400016X-main.pdf

accesso aperto

Dimensione 1.9 MB
Formato Adobe PDF
1.9 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1268429
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact