Despite their impact on longevity, serviceability, and environmental footprint of our built infrastructure, the chemo-physical origins of nanoscale properties of cementitious materials, and their link to macroscale properties still remain rather obscure. Here, we discuss a multi-scale approach that describes different aspects of physical properties of C-S-H at the nano- and meso-scales. These include dynamics of water, thermal properties and mechanical behavior of C-S-H and its effect on properties of cement paste at different scales.

C-S-H across Length Scales: From Nano to Micron

Masoero E.;
2015-01-01

Abstract

Despite their impact on longevity, serviceability, and environmental footprint of our built infrastructure, the chemo-physical origins of nanoscale properties of cementitious materials, and their link to macroscale properties still remain rather obscure. Here, we discuss a multi-scale approach that describes different aspects of physical properties of C-S-H at the nano- and meso-scales. These include dynamics of water, thermal properties and mechanical behavior of C-S-H and its effect on properties of cement paste at different scales.
2015
CONCREEP 2015: Mechanics and Physics of Creep, Shrinkage, and Durability of Concrete and Concrete Structures - Proceedings of the 10th International Conference on Mechanics and Physics of Creep, Shrinkage, and Durability of Concrete and Concrete Structures
File in questo prodotto:
File Dimensione Formato  
2015_Qomi_Comcreep.pdf

Accesso riservato

Dimensione 761.22 kB
Formato Adobe PDF
761.22 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1268040
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? ND
social impact