By the end of cement hydration calcium-silicate-hydrate (C-S-H) gels extends over tens and hundreds of nanometers. Their complex texture affects directly, and to a large extent, the macroscopic hygrothermal and mechanical behavior of cement. Here we review a statistical physics approach recently developed, which allows us to investigate the gel formation under the out-of-equilibrium conditions typical of cement hydration and the role of the nano-scale structure in C - S - H mechanics upon hardening. Our investigations have unveiled the role, in the C-S-H gels, of nano-scale structural and mechanical heterogeneities that develop due to the the far-from-equilibrium physico-chemical environment in which the material forms. A subtle interplay between the out-of-equilibrium evolution and the effective interactions emerging between the nano-scale units of the gels at different stages of the hydration process ultimately determines the mesoscale texture of cement hydrates and their material properties.

The Meso-Scale Texture of Cement Hydrate Gels: Out-of-Equilibrium Evolution and Thermodynamic Driving

Masoero E.;
2015-01-01

Abstract

By the end of cement hydration calcium-silicate-hydrate (C-S-H) gels extends over tens and hundreds of nanometers. Their complex texture affects directly, and to a large extent, the macroscopic hygrothermal and mechanical behavior of cement. Here we review a statistical physics approach recently developed, which allows us to investigate the gel formation under the out-of-equilibrium conditions typical of cement hydration and the role of the nano-scale structure in C - S - H mechanics upon hardening. Our investigations have unveiled the role, in the C-S-H gels, of nano-scale structural and mechanical heterogeneities that develop due to the the far-from-equilibrium physico-chemical environment in which the material forms. A subtle interplay between the out-of-equilibrium evolution and the effective interactions emerging between the nano-scale units of the gels at different stages of the hydration process ultimately determines the mesoscale texture of cement hydrates and their material properties.
2015
CONCREEP 2015: Mechanics and Physics of Creep, Shrinkage, and Durability of Concrete and Concrete Structures - Proceedings of the 10th International Conference on Mechanics and Physics of Creep, Shrinkage, and Durability of Concrete and Concrete Structures
File in questo prodotto:
File Dimensione Formato  
2015_Ioannidou_CONCREEP.pdf

Accesso riservato

: Pre-Print (o Pre-Refereeing)
Dimensione 4.22 MB
Formato Adobe PDF
4.22 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1267622
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact