We study a Euler-Bernoulli beam equation with localized discontinuous structural damping. As our main result, we prove that the associated $C_0$-semigroup $(S(t))_{t\geq0}$ is of Gevrey class $\delta>24$ for $t>0$, hence immediately differentiable. Moreover, we show that $(S(t))_{t\geq0}$ is exponentially stable.

Gevrey regularity for the Euler–Bernoulli beam equation with localized structural damping

Dell'Oro, Filippo
2024-01-01

Abstract

We study a Euler-Bernoulli beam equation with localized discontinuous structural damping. As our main result, we prove that the associated $C_0$-semigroup $(S(t))_{t\geq0}$ is of Gevrey class $\delta>24$ for $t>0$, hence immediately differentiable. Moreover, we show that $(S(t))_{t\geq0}$ is exponentially stable.
2024
Euler-Bernoulli beam
Localized structural damping
Gevrey class
Differentiability
Exponential stability
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1267071
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 3
social impact