Within the emerging age of lunar exploration, optimizing transfer trajectories is a fundamental measure toward achieving more economical and efficient lunar missions. This study addresses the possibility of reducing the fuel cost of two-impulse Earth–Moon transfers in a four-body model with the Earth, the Moon, and the Sun as primaries. Lawden’s primer vector theory is applied within this framework to derive a set of necessary conditions for a fuel-optimal trajectory. These conditions are used to identify which trajectories from an existing database could benefit from the insertion of an additional intermediate impulse. More than 10,000 three-impulse transfers are computed with a direct numerical optimization method. These solutions contribute to enriching the database of impulsive trajectories, useful to perform trade-off analyses. While the majority of trajectories exhibit only marginal improvements, a significant breakthrough emerges for transfers featuring an initial gravity assist at the Moon. Implementing a corrective maneuver after the lunar encounter yields substantial reductions in fuel costs.

On optimal three-impulse Earth–Moon transfers in a four-body model

Grossi, Guido;Buonagura, Carmine;Giordano, Carmine;Topputo, Francesco
2024-01-01

Abstract

Within the emerging age of lunar exploration, optimizing transfer trajectories is a fundamental measure toward achieving more economical and efficient lunar missions. This study addresses the possibility of reducing the fuel cost of two-impulse Earth–Moon transfers in a four-body model with the Earth, the Moon, and the Sun as primaries. Lawden’s primer vector theory is applied within this framework to derive a set of necessary conditions for a fuel-optimal trajectory. These conditions are used to identify which trajectories from an existing database could benefit from the insertion of an additional intermediate impulse. More than 10,000 three-impulse transfers are computed with a direct numerical optimization method. These solutions contribute to enriching the database of impulsive trajectories, useful to perform trade-off analyses. While the majority of trajectories exhibit only marginal improvements, a significant breakthrough emerges for transfers featuring an initial gravity assist at the Moon. Implementing a corrective maneuver after the lunar encounter yields substantial reductions in fuel costs.
2024
File in questo prodotto:
File Dimensione Formato  
GROSG01-24.pdf

accesso aperto

: Publisher’s version
Dimensione 4.02 MB
Formato Adobe PDF
4.02 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1267013
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact