Microelectromechanical Systems (MEMS) Deformable Mirrors (DMs) are a key technology option for adaptive optics instruments for space applications because they provide high-precision wavefront control with small form-factor, low-power devices. The Deformable Mirror Demonstration Mission (DeMi) CubeSat demonstrated a MEMS DM in space for the first time in order to raise the Technology Readiness Level (TRL) of the technology for future space applications such as high-contrast imaging of exoplanets and optical communications. The DeMi payload demonstrated a 140-actuator MEMS DM from Boston Micromachines Corporation. DM performance was measured with a Shack Hartmann wavefront sensor (SHWFS). The DeMi CubeSat began on-orbit operations in July 2020 and has since met the mission goals of measuring individual actuator displacements to a precision of 12 nm and correcting wavefront errors in space to <100 nm RMS error. The DeMi mission has raised the TRL of MEMS DM technology from a 5 to a 9. This paper summarizes the DeMi payload design and the results from over a year of on-orbit operations. Individual actuator measurements from ground and space operations show the MEMS DM actuating in space with similar performance and measurement uncertainty to ground data with no dead or under-actuating actuators detected. Wavefront control experiments show the DeMi payload correcting thermal- and vibration-induced wavefront errors in space.

On-orbit operations summary for the Deformable Mirror Demonstration Mission (DeMi) CubeSat

Morgan, Rachel E.;
2022-01-01

Abstract

Microelectromechanical Systems (MEMS) Deformable Mirrors (DMs) are a key technology option for adaptive optics instruments for space applications because they provide high-precision wavefront control with small form-factor, low-power devices. The Deformable Mirror Demonstration Mission (DeMi) CubeSat demonstrated a MEMS DM in space for the first time in order to raise the Technology Readiness Level (TRL) of the technology for future space applications such as high-contrast imaging of exoplanets and optical communications. The DeMi payload demonstrated a 140-actuator MEMS DM from Boston Micromachines Corporation. DM performance was measured with a Shack Hartmann wavefront sensor (SHWFS). The DeMi CubeSat began on-orbit operations in July 2020 and has since met the mission goals of measuring individual actuator displacements to a precision of 12 nm and correcting wavefront errors in space to <100 nm RMS error. The DeMi mission has raised the TRL of MEMS DM technology from a 5 to a 9. This paper summarizes the DeMi payload design and the results from over a year of on-orbit operations. Individual actuator measurements from ground and space operations show the MEMS DM actuating in space with similar performance and measurement uncertainty to ground data with no dead or under-actuating actuators detected. Wavefront control experiments show the DeMi payload correcting thermal- and vibration-induced wavefront errors in space.
2022
Adaptive Optics Systems VIII 2022
File in questo prodotto:
File Dimensione Formato  
121857O.pdf

Accesso riservato

: Publisher’s version
Dimensione 3.86 MB
Formato Adobe PDF
3.86 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1266665
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 4
  • ???jsp.display-item.citation.isi??? 3
social impact