Smart grids (SG) constitute a revolutionary concept within the energy sector, enabling the establishment of a bidirectional communication infrastructure. This infrastructure significantly improves control, efficiency, and overall service quality in power systems. The study provides an in-depth survey on the classification of EVs, including both plug-in and non-plug-in EVs, and the integration process of V2G, including bidirectional power flow analysis. Moreover, various control strategies for EV integration are explored, ranging from centralized and decentralized to hierarchical control structures. Further, the research thoroughly examines the potential benefits of EV integration and addresses associated challenges, such as battery degradation, infrastructure requirements, cybersecurity and communication issues, grid congestion, and consumer behavior. The study goes beyond theoretical exploration and offers a comprehensive simulation analysis. This analysis leverages the storage capabilities of EVs to provide grid support services. A real-time dynamic dispatch strategy is formulated to integrate EVs into the automatic generation control of multi-energy systems. The findings demonstrate that EVs can effectively mitigate forecasting errors in a power network heavily reliant on wind energy sources. Consequently, the storage capabilities of EVs contribute to enhancing grid flexibility in managing the intermittency of renewable energy resources.
A survey on enhancing grid flexibility through bidirectional interactive electric vehicle operations
Ullah Z.;
2024-01-01
Abstract
Smart grids (SG) constitute a revolutionary concept within the energy sector, enabling the establishment of a bidirectional communication infrastructure. This infrastructure significantly improves control, efficiency, and overall service quality in power systems. The study provides an in-depth survey on the classification of EVs, including both plug-in and non-plug-in EVs, and the integration process of V2G, including bidirectional power flow analysis. Moreover, various control strategies for EV integration are explored, ranging from centralized and decentralized to hierarchical control structures. Further, the research thoroughly examines the potential benefits of EV integration and addresses associated challenges, such as battery degradation, infrastructure requirements, cybersecurity and communication issues, grid congestion, and consumer behavior. The study goes beyond theoretical exploration and offers a comprehensive simulation analysis. This analysis leverages the storage capabilities of EVs to provide grid support services. A real-time dynamic dispatch strategy is formulated to integrate EVs into the automatic generation control of multi-energy systems. The findings demonstrate that EVs can effectively mitigate forecasting errors in a power network heavily reliant on wind energy sources. Consequently, the storage capabilities of EVs contribute to enhancing grid flexibility in managing the intermittency of renewable energy resources.File | Dimensione | Formato | |
---|---|---|---|
1-s2.0-S2352484724002853-main.pdf
accesso aperto
:
Publisher’s version
Dimensione
4.73 MB
Formato
Adobe PDF
|
4.73 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.