Deviations of the septal wall are widespread anatomic anomalies of the human nose; they vary significantly in shape and location, and often cause the obstruction of the nasal airways. When severe, septal deviations need to be surgically corrected by ear–nose–throat (ENT) specialists. Septoplasty, however, has a low success rate, owing to the lack of suitable standardized clinical tools for assessing type and severity of obstructions, and for surgery planning. Moreover, the restoration of a perfectly straight septal wall is often impossible and possibly unnecessary. This paper introduces a procedure, based on advanced patient-specific Computational Fluid Dynamics (CFD) simulations, to support ENT surgeons in septoplasty planning. The method hinges upon the theory of adjoint-based optimization, and minimizes a cost function that indirectly accounts for viscous losses. A sensitivity map is computed on the mucosal wall to provide the surgeon with a simple quantification of how much tissue removal at each location would contribute to easing the obstruction. The optimization procedure is applied to three representative nasal anatomies, reconstructed from CT scans of patients affected by complex septal deviations. The computed sensitivity consistently identifies all the anomalies correctly. Virtual surgery, i.e. morphing of the anatomies according to the computed sensitivity, confirms that the characteristics of the nasal airflow improve significantly after small anatomy changes derived from adjoint-based optimization.

An adjoint-based approach for the surgical correction of nasal septal deviations

Schillaci, Andrea;Quadrio, Maurizio
2024-01-01

Abstract

Deviations of the septal wall are widespread anatomic anomalies of the human nose; they vary significantly in shape and location, and often cause the obstruction of the nasal airways. When severe, septal deviations need to be surgically corrected by ear–nose–throat (ENT) specialists. Septoplasty, however, has a low success rate, owing to the lack of suitable standardized clinical tools for assessing type and severity of obstructions, and for surgery planning. Moreover, the restoration of a perfectly straight septal wall is often impossible and possibly unnecessary. This paper introduces a procedure, based on advanced patient-specific Computational Fluid Dynamics (CFD) simulations, to support ENT surgeons in septoplasty planning. The method hinges upon the theory of adjoint-based optimization, and minimizes a cost function that indirectly accounts for viscous losses. A sensitivity map is computed on the mucosal wall to provide the surgeon with a simple quantification of how much tissue removal at each location would contribute to easing the obstruction. The optimization procedure is applied to three representative nasal anatomies, reconstructed from CT scans of patients affected by complex septal deviations. The computed sensitivity consistently identifies all the anomalies correctly. Virtual surgery, i.e. morphing of the anatomies according to the computed sensitivity, confirms that the characteristics of the nasal airflow improve significantly after small anatomy changes derived from adjoint-based optimization.
2024
File in questo prodotto:
File Dimensione Formato  
MACEM01-24.pdf

accesso aperto

: Publisher’s version
Dimensione 2.94 MB
Formato Adobe PDF
2.94 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1265721
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact