The solution of reactive computational fluid dynamics (CFD) simulations is accelerated by the implementation of a hybrid central processing unit/graphics processing units (CPU/GPU) Finite Volume solver based on the operator-splitting strategy, where the chemistry integration is treated independently of the flow solution. The integration of ordinary differential equations (ODEs) describing the finite-rate chemical kinetics is solved by an adaptive multi-block explicit solver on GPUs, while the load of the fluid solution is distributed on a multicore CPU algorithm. The resulting speed-up for reactive CFD simulations is up to 10X; the performance gain increases with the size of the mechanism. The proposed implementation is general and can be applied to any CFD problem where the governing equations for the fluid transport are coupled with an ODE system. Code validation is performed against reference solutions on a selection of test cases involving reacting flows.

A hybrid CPU‐GPU paradigm to accelerate reactive CFD simulations

Ghioldi, Federico;Piscaglia, Federico
2024-01-01

Abstract

The solution of reactive computational fluid dynamics (CFD) simulations is accelerated by the implementation of a hybrid central processing unit/graphics processing units (CPU/GPU) Finite Volume solver based on the operator-splitting strategy, where the chemistry integration is treated independently of the flow solution. The integration of ordinary differential equations (ODEs) describing the finite-rate chemical kinetics is solved by an adaptive multi-block explicit solver on GPUs, while the load of the fluid solution is distributed on a multicore CPU algorithm. The resulting speed-up for reactive CFD simulations is up to 10X; the performance gain increases with the size of the mechanism. The proposed implementation is general and can be applied to any CFD problem where the governing equations for the fluid transport are coupled with an ODE system. Code validation is performed against reference solutions on a selection of test cases involving reacting flows.
File in questo prodotto:
File Dimensione Formato  
GHIOF01-24.pdf

Accesso riservato

: Publisher’s version
Dimensione 2.64 MB
Formato Adobe PDF
2.64 MB Adobe PDF   Visualizza/Apri
GHIOF_OA_01-24.pdf

embargo fino al 03/05/2025

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 2 MB
Formato Adobe PDF
2 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1265362
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact