This paper presents a numerical approach for investigating fatigue delamination propagation in composite stiffened panels loaded in compression in the post-buckling field. These components are widely utilized in aerospace structures due to their lightweight and high-strength properties. However, fatigue-induced damage, particularly delamination at the skin–stringer interface, poses a significant challenge. The proposed numerical approach, called the “Min–Max Load Approach”, allows for the calculation of the local stress ratio in a single finite element analysis. It represents the ratio between the minimum and maximum values of the stress along the delamination front, enabling accurate evaluation of the crack growth rate. The methodology is applied here in conjunction with the cohesive zone model technique to evaluate the post-buckling fatigue behavior of a composite single-stringer specimen with an initial delamination. Comparisons with experimental data validate the predictive capabilities of the proposed approach. © 2024 by the authors.

A Numerical Assessment of the Influence of Local Stress Ratio in the Fatigue Analysis of Post-Buckled Composite Single-Stringer Specimen

Bisagni, Chiara
2024-01-01

Abstract

This paper presents a numerical approach for investigating fatigue delamination propagation in composite stiffened panels loaded in compression in the post-buckling field. These components are widely utilized in aerospace structures due to their lightweight and high-strength properties. However, fatigue-induced damage, particularly delamination at the skin–stringer interface, poses a significant challenge. The proposed numerical approach, called the “Min–Max Load Approach”, allows for the calculation of the local stress ratio in a single finite element analysis. It represents the ratio between the minimum and maximum values of the stress along the delamination front, enabling accurate evaluation of the crack growth rate. The methodology is applied here in conjunction with the cohesive zone model technique to evaluate the post-buckling fatigue behavior of a composite single-stringer specimen with an initial delamination. Comparisons with experimental data validate the predictive capabilities of the proposed approach. © 2024 by the authors.
2024
File in questo prodotto:
File Dimensione Formato  
RAIMA01-24.pdf

accesso aperto

: Publisher’s version
Dimensione 8.05 MB
Formato Adobe PDF
8.05 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1265298
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact