: A promising alternative to bulk materials for the nonlinear coupling of optical fields is provided by photonic integrated circuits based on heterostructures made of asymmetric-coupled quantum wells. These devices achieve a huge nonlinear susceptivity but are affected by strong absorption. Here, driven by the technological relevance of the SiGe material system, we focus on Second-Harmonic Generation in the mid-infrared spectral region, realized by means of Ge-rich waveguides hosting p-type Ge/SiGe asymmetric coupled quantum wells. We present a theoretical investigation of the generation efficiency in terms of phase mismatch effects and trade-off between nonlinear coupling and absorption. To maximize the SHG efficiency at feasible propagation distances, we also individuate the optimal density of quantum wells. Our results indicate that conversion efficiencies of ≈ 0.6%/W can be achieved in WGs featuring lengths of few hundreds µm only.

Modelling second harmonic generation at mid-infrared frequencies in waveguide integrated Ge/SiGe quantum wells

Chesi, Giovanni;Falcone, Virginia;Calcaterra, Stefano;Virgilio, Michele;Frigerio, Jacopo
2023-01-01

Abstract

: A promising alternative to bulk materials for the nonlinear coupling of optical fields is provided by photonic integrated circuits based on heterostructures made of asymmetric-coupled quantum wells. These devices achieve a huge nonlinear susceptivity but are affected by strong absorption. Here, driven by the technological relevance of the SiGe material system, we focus on Second-Harmonic Generation in the mid-infrared spectral region, realized by means of Ge-rich waveguides hosting p-type Ge/SiGe asymmetric coupled quantum wells. We present a theoretical investigation of the generation efficiency in terms of phase mismatch effects and trade-off between nonlinear coupling and absorption. To maximize the SHG efficiency at feasible propagation distances, we also individuate the optimal density of quantum wells. Our results indicate that conversion efficiencies of ≈ 0.6%/W can be achieved in WGs featuring lengths of few hundreds µm only.
2023
File in questo prodotto:
File Dimensione Formato  
oe-31-11-17098.pdf

accesso aperto

: Publisher’s version
Dimensione 3.15 MB
Formato Adobe PDF
3.15 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1265084
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact