The rotor system during its operation is susceptible to various faults such as unbalance, rub-impact, crack, and misalignment, which usually induce the rotor system to exhibit nonlinear behavior. Some linear diagnosis methods are unable to extract nonlinear characteristics of the faulty rotor system. However, existing nonlinear fault diagnosis methods can describe the nonlinear characteristics but cannot quantitatively indicate the severity of rub-impact faults. To address this issue, this study combines the nonlinear output frequency response functions weighted contribution rate (WNOFRFs) and JS divergence to develop an improved fault diagnosis approach, WNOFRFs based on the JS divergence (WNOFRFs-JS). And a superior NOFRFs-associated index JSRm is developed to indicate the severity of faults. In addition, a sensitive factor is defined to evaluate the sensitivity of the index. The performance of this approach is verified by an established dynamic model and a rotor rub-impact experimental rig. The results prove the effectiveness and merits of this approach for the identification of rotor rub-impact. JSRm is especially sensitive to rub-impact and can also quantitatively detect the severity of faults. The present approach can accurately and quantitatively identify the rub-impact rotor system. These advantages enable the improved WNOFRFs to be applied in the fault diagnosis and condition monitoring of rotating machinery and even other nonlinear systems.

Research on a quantitative fault diagnosis method for rotor rub-impact

Sbarufatti C.;Giglio M.
2023-01-01

Abstract

The rotor system during its operation is susceptible to various faults such as unbalance, rub-impact, crack, and misalignment, which usually induce the rotor system to exhibit nonlinear behavior. Some linear diagnosis methods are unable to extract nonlinear characteristics of the faulty rotor system. However, existing nonlinear fault diagnosis methods can describe the nonlinear characteristics but cannot quantitatively indicate the severity of rub-impact faults. To address this issue, this study combines the nonlinear output frequency response functions weighted contribution rate (WNOFRFs) and JS divergence to develop an improved fault diagnosis approach, WNOFRFs based on the JS divergence (WNOFRFs-JS). And a superior NOFRFs-associated index JSRm is developed to indicate the severity of faults. In addition, a sensitive factor is defined to evaluate the sensitivity of the index. The performance of this approach is verified by an established dynamic model and a rotor rub-impact experimental rig. The results prove the effectiveness and merits of this approach for the identification of rotor rub-impact. JSRm is especially sensitive to rub-impact and can also quantitatively detect the severity of faults. The present approach can accurately and quantitatively identify the rub-impact rotor system. These advantages enable the improved WNOFRFs to be applied in the fault diagnosis and condition monitoring of rotating machinery and even other nonlinear systems.
2023
fault diagnosis
NOFRFs
Nonlinear systems
rotor
rub-impact
File in questo prodotto:
File Dimensione Formato  
liang-et-al-2023-research-on-a-quantitative-fault-diagnosis-method-for-rotor-rub-impact.pdf

Accesso riservato

: Publisher’s version
Dimensione 5.75 MB
Formato Adobe PDF
5.75 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1265026
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 4
social impact