The synthesis of campholenic-based fragrances requires the preservation of specific structural elements to capture the desired sandalwood scent. The most critical step of their preparation is the reduction of α,β-unsaturated carbonyl precursors while preserving the campholenic unsaturation. Classical reductions, especially hydrogenations, often lack complete chemoselectivity, leading to the formation of over-reduced byproducts. In addition, the stereochemistry plays a key role in the olfactory perception of these chiral fragrances. However, none of the current industrial syntheses are stereoselective, resulting in wasteful production of non-contributory isomers. Herein, we explore the untapped potential of biocatalytic reductions using ene-reductases (ERs) and alcohol dehydrogenases (ADHs) to enhance the sustainability of four commercial sandalwood fragrances (Brahmanol®, Firsantol®, Sandalore®, and Ebanol®), focusing on the stereoselective synthesis of their most odorant isomers. A comparison of green metrics, including E-factors and EcoScale, between bio- and chemo-based reductions is presented.

Biocatalytic approaches for a more sustainable synthesis of sandalwood fragrances

Maria Cristina Cancellieri;Davide Maggioni;Daniele Fiorito;Elisabetta Brenna;Fabio Parmeggiani;Francesco Gilberto Gatti
2024-01-01

Abstract

The synthesis of campholenic-based fragrances requires the preservation of specific structural elements to capture the desired sandalwood scent. The most critical step of their preparation is the reduction of α,β-unsaturated carbonyl precursors while preserving the campholenic unsaturation. Classical reductions, especially hydrogenations, often lack complete chemoselectivity, leading to the formation of over-reduced byproducts. In addition, the stereochemistry plays a key role in the olfactory perception of these chiral fragrances. However, none of the current industrial syntheses are stereoselective, resulting in wasteful production of non-contributory isomers. Herein, we explore the untapped potential of biocatalytic reductions using ene-reductases (ERs) and alcohol dehydrogenases (ADHs) to enhance the sustainability of four commercial sandalwood fragrances (Brahmanol®, Firsantol®, Sandalore®, and Ebanol®), focusing on the stereoselective synthesis of their most odorant isomers. A comparison of green metrics, including E-factors and EcoScale, between bio- and chemo-based reductions is presented.
2024
File in questo prodotto:
File Dimensione Formato  
d4gc00746h.pdf

accesso aperto

: Publisher’s version
Dimensione 1.68 MB
Formato Adobe PDF
1.68 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1265004
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact