We derive and validate an analytical model that describes the migration of Raman scattered photons in two-layer diffusive media, based on the diffusion equation in the time domain. The model is derived under a heuristic approximation that background optical properties are identical on the excitation and Raman emission wavelengths. Methods for the reconstruction of two-layer Raman spectra have been developed, tested in computer simulations and validated on tissue-mimicking phantom measurements data. Effects of different parameters were studied in simulations, showing that the thickness of the top layer and number of detected photon counts have the most significant impact on the reconstruction. The concept of quantitative, mathematically rigorous reconstruction using the proposed model was finally proven on experimental measurements, by successfully separating the spectra of silicone and calcium carbonate (calcite) layers, showing the potential for further development and eventual application in clinical diagnostics.

Two-layer reconstruction of Raman spectra in diffusive media based on an analytical model in the time domain

Pifferi A.
2023-01-01

Abstract

We derive and validate an analytical model that describes the migration of Raman scattered photons in two-layer diffusive media, based on the diffusion equation in the time domain. The model is derived under a heuristic approximation that background optical properties are identical on the excitation and Raman emission wavelengths. Methods for the reconstruction of two-layer Raman spectra have been developed, tested in computer simulations and validated on tissue-mimicking phantom measurements data. Effects of different parameters were studied in simulations, showing that the thickness of the top layer and number of detected photon counts have the most significant impact on the reconstruction. The concept of quantitative, mathematically rigorous reconstruction using the proposed model was finally proven on experimental measurements, by successfully separating the spectra of silicone and calcium carbonate (calcite) layers, showing the potential for further development and eventual application in clinical diagnostics.
2023
File in questo prodotto:
File Dimensione Formato  
oe-31-24-40573.pdf

accesso aperto

Descrizione: File principale
: Publisher’s version
Dimensione 7.14 MB
Formato Adobe PDF
7.14 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1264839
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact