: We present chemical kinetics and environmental monitoring applications in the long-wavelength mid-infrared (LW-MIR) region using a new diagnostic that exploits a widely tunable light source emitting in the LW-MIR. The custom-designed laser source is based on a difference-frequency generation (DFG) process in a nonlinear orientation-patterned GaAs crystal. The pump laser, an external-cavity quantum cascade laser, is tuned in a continuous-wave (cw) mode, while the signal laser, a C O 2 gas laser, is operated in a pulsed mode with a kilohertz repetition rate. The idler wavelength can be tuned between 11.58 (863.56c m -1) and 15.00 µm (666.67c m -1) in a quasi-cw manner. We discuss the unique prospective applications offered by probing the LW-MIR region for chemical kinetics and environment-monitoring applications. We showcase the potential of the DFG laser source by some representative applications.

Laser-based sensing in the long-wavelength mid-infrared: chemical kinetics and environmental monitoring applications

Marangoni, Marco;
2023-01-01

Abstract

: We present chemical kinetics and environmental monitoring applications in the long-wavelength mid-infrared (LW-MIR) region using a new diagnostic that exploits a widely tunable light source emitting in the LW-MIR. The custom-designed laser source is based on a difference-frequency generation (DFG) process in a nonlinear orientation-patterned GaAs crystal. The pump laser, an external-cavity quantum cascade laser, is tuned in a continuous-wave (cw) mode, while the signal laser, a C O 2 gas laser, is operated in a pulsed mode with a kilohertz repetition rate. The idler wavelength can be tuned between 11.58 (863.56c m -1) and 15.00 µm (666.67c m -1) in a quasi-cw manner. We discuss the unique prospective applications offered by probing the LW-MIR region for chemical kinetics and environment-monitoring applications. We showcase the potential of the DFG laser source by some representative applications.
2023
Chemical kinetics
Difference frequency generation
Gas spectroscopy
File in questo prodotto:
File Dimensione Formato  
Applied optics DFG source.pdf

Accesso riservato

: Publisher’s version
Dimensione 8.53 MB
Formato Adobe PDF
8.53 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1264599
Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 16
  • ???jsp.display-item.citation.isi??? ND
social impact