: We present an experimental and theoretical investigation of the reaction of vibrationally excited CN (v = 1) with isomers of butadiene at low temperature. The experiments were conducted using the newly built apparatus, UF-CRDS, which couples near-infrared cw-cavity ring-down spectroscopy with a pulsed Laval flow. The well-matched hydrodynamic time and long ring-down time decays allow measurement of the kinetics of the reactions within a single trace of a ring-down decay, termed Simultaneous Kinetics and Ring-down (SKaR). The pulsed experiments were carried out using a Laval nozzle designed for the 70 K uniform flow with nitrogen as the carrier gas. The measured bimolecular rates for the reactions of CN (v = 1) with 1,3-butadiene and 1,2-butadiene are (3.96 ± 0.28) × 10-10 and (3.06 ± 0.35) × 10-10 cm3 per molecule per s, respectively. The reaction rate measured for CN (v = 1) with the 1,3-butadiene isomer is in good agreement with the rate previously reported for the reaction with ground state CN (v = 0) under similar conditions. We report the rate of the reaction of CN (v = 1) with the 1,2-butadiene isomer here for the first time. The experimental results were interpreted with the aid of variable reaction-coordinate transition-state theory calculations to determine rates and branching of the addition channels based on a high-level multireference treatment of the potential energy surface. H-abstraction reaction rates were also theoretically determined. For the 1,2-butadiene system, theoretical estimates are then combined with literature values for the energy-dependent product yields from the initial adducts to predict overall temperature-dependent product branching. H loss giving 2-cyano-1,3-butadiene + H is the main product channel, exclusive of abstraction, at all energies, but methyl loss forming 1-cyano-prop-3-yne is 15% at low temperature growing to 35% at 500 K. Abstraction forming HCN and various radicals is important at 500 K and above. The astrochemical implications of these results are discussed.

Kinetics of CN (v = 1) reactions with butadiene isomers at low temperature by cw-cavity ring-down in a pulsed Laval flow with theoretical modelling of rates and entrance channel branching

Cavallotti, Carlo;
2023-01-01

Abstract

: We present an experimental and theoretical investigation of the reaction of vibrationally excited CN (v = 1) with isomers of butadiene at low temperature. The experiments were conducted using the newly built apparatus, UF-CRDS, which couples near-infrared cw-cavity ring-down spectroscopy with a pulsed Laval flow. The well-matched hydrodynamic time and long ring-down time decays allow measurement of the kinetics of the reactions within a single trace of a ring-down decay, termed Simultaneous Kinetics and Ring-down (SKaR). The pulsed experiments were carried out using a Laval nozzle designed for the 70 K uniform flow with nitrogen as the carrier gas. The measured bimolecular rates for the reactions of CN (v = 1) with 1,3-butadiene and 1,2-butadiene are (3.96 ± 0.28) × 10-10 and (3.06 ± 0.35) × 10-10 cm3 per molecule per s, respectively. The reaction rate measured for CN (v = 1) with the 1,3-butadiene isomer is in good agreement with the rate previously reported for the reaction with ground state CN (v = 0) under similar conditions. We report the rate of the reaction of CN (v = 1) with the 1,2-butadiene isomer here for the first time. The experimental results were interpreted with the aid of variable reaction-coordinate transition-state theory calculations to determine rates and branching of the addition channels based on a high-level multireference treatment of the potential energy surface. H-abstraction reaction rates were also theoretically determined. For the 1,2-butadiene system, theoretical estimates are then combined with literature values for the energy-dependent product yields from the initial adducts to predict overall temperature-dependent product branching. H loss giving 2-cyano-1,3-butadiene + H is the main product channel, exclusive of abstraction, at all energies, but methyl loss forming 1-cyano-prop-3-yne is 15% at low temperature growing to 35% at 500 K. Abstraction forming HCN and various radicals is important at 500 K and above. The astrochemical implications of these results are discussed.
2023
File in questo prodotto:
File Dimensione Formato  
D3FD00029J[75]Proof.pdf

Accesso riservato

: Post-Print (DRAFT o Author’s Accepted Manuscript-AAM)
Dimensione 637.98 kB
Formato Adobe PDF
637.98 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1264587
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact