: This paper aims to study the fixed-time stabilization of a class of delayed discontinuous reaction-diffusion Cohen-Grossberg neural networks. Firstly, by providing some relaxed conditions containing indefinite functions and based on inequality techniques, a new fixed-time stability lemma is given, which can improve the traditional ones. Secondly, based on state-dependent switching laws, the periodic wave solution of the formulated networks is transformed into the periodic solution of ordinary differential system. By utilizing differential inclusions theory and coincidence theorem, the existence of periodic solutions is obtained. Thirdly, based on the new fixed-time stability lemma, the periodic solutions are stabilized at zero in a fixed-time, which is a new topic on reaction-diffusion networks. Moreover, the established criteria are all delay-dependent, which are less conservative than the previous delay-independent ones for ensuring the stabilization of delayed reaction-diffusion networks. Finally, two examples give numerical explanations of the proposed results and highlight the influence of delays.

Fixed-time periodic stabilization of discontinuous reaction–diffusion Cohen–Grossberg neural networks

Karimi, Hamid Reza
2023-01-01

Abstract

: This paper aims to study the fixed-time stabilization of a class of delayed discontinuous reaction-diffusion Cohen-Grossberg neural networks. Firstly, by providing some relaxed conditions containing indefinite functions and based on inequality techniques, a new fixed-time stability lemma is given, which can improve the traditional ones. Secondly, based on state-dependent switching laws, the periodic wave solution of the formulated networks is transformed into the periodic solution of ordinary differential system. By utilizing differential inclusions theory and coincidence theorem, the existence of periodic solutions is obtained. Thirdly, based on the new fixed-time stability lemma, the periodic solutions are stabilized at zero in a fixed-time, which is a new topic on reaction-diffusion networks. Moreover, the established criteria are all delay-dependent, which are less conservative than the previous delay-independent ones for ensuring the stabilization of delayed reaction-diffusion networks. Finally, two examples give numerical explanations of the proposed results and highlight the influence of delays.
2023
Cohen–Grossberg networks
Filippov systems
Fixed-time stability
Periodicity
Reaction–diffusion
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1263075
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 4
  • ???jsp.display-item.citation.isi??? ND
social impact