: This paper is devoted to the issue of observer-based adaptive sliding mode control of distributed delay systems with deterministic switching rules and stochastic jumping process, simultaneously, through a neural network approach. Firstly, relying on the designed Lebesgue observer, a sliding mode hyperplane in the integral form is put forward, on which a desired sliding mode dynamic system is derived. Secondly, in consideration of complexity of real transition rates information, a novel adaptive dynamic controller that fits to universal mode information is designed to ensure the existence of sliding motion in finite-time, especially for the case that the mode information is totally unknown. In addition, an observer-based neural compensator is developed to attenuate the effectiveness of unknown system nonlinearity. Thirdly, an average dwell-time approach is utilized to check the mean-square exponential stability of the obtained sliding mode dynamics, particularly, the proposed criteria conditions are successfully unified with the designed controller in the type of mode information. Finally, a practical example is provided to verify the validity of the proposed method.

Adaptive neural-network-based sliding mode control of switching distributed delay systems with Markov jump parameters

Karimi, Hamid Reza;
2023-01-01

Abstract

: This paper is devoted to the issue of observer-based adaptive sliding mode control of distributed delay systems with deterministic switching rules and stochastic jumping process, simultaneously, through a neural network approach. Firstly, relying on the designed Lebesgue observer, a sliding mode hyperplane in the integral form is put forward, on which a desired sliding mode dynamic system is derived. Secondly, in consideration of complexity of real transition rates information, a novel adaptive dynamic controller that fits to universal mode information is designed to ensure the existence of sliding motion in finite-time, especially for the case that the mode information is totally unknown. In addition, an observer-based neural compensator is developed to attenuate the effectiveness of unknown system nonlinearity. Thirdly, an average dwell-time approach is utilized to check the mean-square exponential stability of the obtained sliding mode dynamics, particularly, the proposed criteria conditions are successfully unified with the designed controller in the type of mode information. Finally, a practical example is provided to verify the validity of the proposed method.
2023
Distributed delay systems
Neural network
Sliding mode control
Switching systems
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1263070
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? ND
social impact