The aim of this paper is to prove the existence and several selected properties of a global fundamental Heat kernel Gamma for the parabolic operators H = Sigma(m)(j=1) X-j(2)-partial derivative(t), where X-1,..., X-m are smooth vector fields on R-n satisfying Hormander's rank condition, and enjoying a suitable homogeneity assumption with respect to a family of non-isotropic dilations. The proof of the existence of G is based on a (algebraic) global lifting technique, together with a representation of G in terms of the integral (performed over the lifting variables) of the Heat kernel for the Heat operator associated with a suitable sub-Laplacian on a homogeneous Carnot group. Among the features of G we prove: homogeneity and symmetry properties; summability properties; its vanishing at infinity; the uniqueness of the bounded solutions of the related Cauchy problem; reproduction and density properties; an integral representation for the higher- order derivatives.

Global heat kernels for parabolic homogeneous hörmander operators

Biagi, Stefano;
2024-01-01

Abstract

The aim of this paper is to prove the existence and several selected properties of a global fundamental Heat kernel Gamma for the parabolic operators H = Sigma(m)(j=1) X-j(2)-partial derivative(t), where X-1,..., X-m are smooth vector fields on R-n satisfying Hormander's rank condition, and enjoying a suitable homogeneity assumption with respect to a family of non-isotropic dilations. The proof of the existence of G is based on a (algebraic) global lifting technique, together with a representation of G in terms of the integral (performed over the lifting variables) of the Heat kernel for the Heat operator associated with a suitable sub-Laplacian on a homogeneous Carnot group. Among the features of G we prove: homogeneity and symmetry properties; summability properties; its vanishing at infinity; the uniqueness of the bounded solutions of the related Cauchy problem; reproduction and density properties; an integral representation for the higher- order derivatives.
2024
File in questo prodotto:
File Dimensione Formato  
S. Biagi, A. Bonfiglioli - Global Heat Kernels for parabolic homogeneous Hormander operators.pdf

Accesso riservato

: Publisher’s version
Dimensione 339.92 kB
Formato Adobe PDF
339.92 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11311/1262702
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact